Какой период полураспада урана 238. Изотопы и получение урана

Уран - это естественно встречающийся в природе элемент, находящий применение,среди прочего, в ядерной энергетике. Природный уран состоит в основном из смеси трех изотопов: 238U, 235U и 234U.

Обедненный уран (ОУ) - это побочный продукт процесса обогащения урана (т. е. повышения содержания в нем расщепляющегося изотопа 235U) в ядерной энергетике; из него практически полностью удален радиоактивный изотоп 234U и на две трети - 235U. Таким образом, ОУ состоит почти полностью из 238U, а его радиоактивность составляет около 60% от радиоактивности природного урана. В ОУ может присутствовать также микроколичество других радиоактивных изотопов, привнесенных в ходе обработки. Химически, физически и токсически ОУ ведет себя так же, как и природный уран в металлическом состоянии. Мелкие частицы обоих металлов легко возгораются, образуя окислы.

Применение обедненного урана. В мирных целях ОУ используется, в частности, при изготовлении самолетных противовесов и противорадиационных экранов медицинской радиотерапевтической аппаратуры, при транспортировке радиоактивных изотопов. Из-за своей высокой плотности и тугоплавкости, а также доступности ОУ используется в тяжелой танковой броне, противотанковых боеприпасах, ракетах и снарядах. Оружие, в котором присутствует ОУ, считается обычным оружием и свободно применяется вооруженными силами.

Вопросы, порождаемые применением обедненного урана . Из выстреленного боеприпаса обедненный уран высвобождается в виде мелких частиц или пыли, которые могут попадать в организм при вдыхании или проглатывании либо оставаться в окружающей среде. Есть вероятность того, что применение оружия с ОУ сказывается на здоровье людей, проживающих в районах конфликтов в Персидском заливе и на Балканах. Некоторые считают, что «синдром войны в Персидском заливе» связан с облучением обедненным ураном, однако причинная зависимость пока не установлена. ОУ попадал в окружающую среду в результате авиакатастроф (например: Амстердам, Нидерланды, 1992 г.; Станстед, Соединенное Королевство, январь 2000 г.), вызывая озабоченность правительств и неправительственных организаций.

Обедненный уран и здоровье человека. Воздействие ОУ на здоровье человека является разным в зависимости от химической формы, в которой он попадает в организм, и может вызываться как химическими, так и радиологическими механизмами. Информации о том, как уран сказывается на здоровье людей и окружающей среде, немного. Вместе с тем, поскольку уран и ОУ - это, в сущности, одно и то же, за исключением состава радиоактивных компонентов, научные исследования по природному урану применимы и к ОУ. Что касается радиационного воздействия ОУ, то картина дополнительно осложняется тем, что большинство данных относится к воздействию на человеческий организм природного и обогащенного урана. Воздействие на здоровье зависит от того, каким образом произошло облучение и какова его степень (через дыхательные пути, при проглатывании, при контакте или через рану), и от характеристик ОУ (размер частиц и растворимость). Вероятность обнаружения возможного воздействия зависит от обстановки (армия, гражданская жизнь, производственная среда).

Типы облучения . При нормальном потреблении человеческим организмом пищи, воздуха и воды в нем присутствует в среднем примерно 90 микрограммов (мкг) урана: примерно 66% в скелете, 16% в печени, 8% в почках и 10% в других тканях. Наружное облучение происходит при близости к металлическому ОУ (например, при работе на складе боеприпасов или при нахождении в машине с боеприпасами или броней, в которых присутствует ОУ) либо при контакте с пылью или осколками, образовавшимися после взрыва или падения. Облучение, полученное только снаружи (т. е. не при проглатывании, не через дыхательные пути и не через кожу), приводит к последствиям исключительно радиологического свойства. Внутреннее облучение происходит в результате попадания ОУ в организм при проглатывании или вдыхании. В армии облучение происходит еще и через раны, образовавшиеся при контакте со снарядами или броней, в которых присутствует ОУ.

Поглощение урана в организме. Большая часть (свыше 95%) урана, попадающего в организм, не поглощается, а удаляется с калом. Из той части урана, которая поглощается кровью, примерно 67% будет в течение суток отфильтровано почками и удалено с мочой. Уран переносится в почки, костную ткань и печень. Подсчитано, что выведение половины этого урана с мочой занимает от 180 до 360 дней.

Опасность для здоровья:

Химическая токсичность: уран вызывает повреждение почек у подопытных животных, и некоторые исследования указывают на то, что долговременное облучение может приводить к нарушению почечной функции у людей. Наблюдавшиеся типы нарушений: узелковые образования на поверхности почки, поражение трубчатого эпителия и повышение содержания глюкозы и белка в моче.

Радиологическая токсичность: распад ОУ происходит главным образом путем испускания альфа-частиц, которые не проникают через внешние слои кожи, но могут влиять на внутренние клетки организма (более подверженные ионизирующему воздействию альфа - излучения), когда ОУ попадает в организм при проглатывании или вдыхании. Поэтому альфа - и бета-облучение при вдыхании нерастворимых частиц ОУ может приводить к повреждению легочных тканей и повышать риск рака легких. Аналогичным образом, предполагается, что поглощение ОУ кровью и его накопление в других органах, в частности в скелете, создает дополнительный риск рака этих органов, зависящий от степени радиационного облучения. Считается, однако, что при низкой степени облучения риск раковых заболеваний весьма низок.

В рамках выполненных на сегодняшний день ограниченных эпидемиологических исследований, посвященных изучению внутреннего облучения в результате попадания частиц ОУ при проглатывании, при вдыхании либо через повреждения кожи или раны, а также в рамках обследования людей, которым по роду занятий приходится сталкиваться с природным или обогащенным ураном, каких-либо негативных последствий для здоровья не обнаружено.

Обедненный уран в окружающей среде. В засушливых регионах большая часть ОУ остается на поверхности в виде пыли. В более дождливых местностях ОУ легче проникает в почву. Возделывание зараженной почвы и потребление зараженной воды и пищи могут создавать опасность для здоровья, однако она будет, скорее всего, невелика. Основным фактором опасности для здоровья будет, скорее, химическая токсичность, а не облучение. Риск облучения обедненным ураном в результате потребления зараженной пищи и воды при возвращении к нормальной жизни в зоне военного конфликта, видимо, более велик для детей, чем для взрослых, поскольку в силу своего любопытства дети склонны тянуть все с рук в рот, а это может привести к попаданию в организм большого количества ОУ с зараженной почвы.

Стандарты. У ВОЗ имеются нормативы в отношении урана, которые применимы и к ОУ. В настоящее время такими нормативами являются:

«Руководство по контролю качества питьевой воды»: 2 мкг/л - показатель, который считается безопасным исходя из данных о субклинических почечных изменениях, приводимых в эпидемиологических исследованиях (ВОЗ, 1998 г.);

допустимая суточная доза (ДСД) для попадания урана через рот: 0,6 мкг на килограмм веса в сутки (ВОЗ, 1998 г.);

предельные нормы ионизирующего облучения: 1 мЗв за год для населения вообще и 20 мЗв в среднем за год на протяжении пяти лет для лиц, работающих в радиационной обстановке (Основные нормы безопасности, 1996 г.).

Изотопы урана - разновидности атомов (и ядер) химического элемента урана, имеющие разное содержание нейтронов в ядре. На данный момент известны 26 изотопов урана и еще 6 возбуждённых изомерных состояний некоторых его нуклидов. В природе встречаются три изотопа урана: 234U (изотопная распространенность 0,0055 %), 235U (0,7200 %), 238U (99,2745 %).

Нуклиды 235U и 238U являются родоначальниками радиоактивных рядов - ряда актиния и ряда радия соответственно. Нуклид 235U используется как топливо в ядерных реакторах, а также в ядерном оружии (благодаря тому, что в нём возможна самоподдерживающаяся цепная ядерная реакция). Нуклид 238U используется для производства плутония-239, который также имеет чрезвычайно большое значение как в качестве топлива для ядерных реакторов, так и в производстве ядерного оружия. Характеристики изотопов урана приведены в таблице 1.

Таблица 1 – Характеристики изотопов урана

Символ нуклида

Масса изотопа (а.е.м.)

Избыток массы (кэВ)

Период полураспада (T1/2)

Спин и чётность ядра

Распространённость изотопа в природе (%)

Энергия возбуждения (кэВ)

220,024720(220)#

221,026400(110)#

222,026090(110)#

940(270) мкс

68,9(4) года

1,592(2)·105 лет

2,455(6)·105 лет

33,5(20) мкс

7,04(1)·108 лет

2,342(3)·107 лет

4,468(3)·109 лет

23,45(2) мин

241,060330(320)#

242,062930(220)#

Примечание:

Распространённость изотопов приведена для большинства природных образцов. Для других источников значения могут сильно отличаться.

Индексами "m", "n", "p" (рядом с символом) обозначены возбужденные изомерные состояния нуклида.

Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Z и N). Неуверенно определённые значения спина и/или его чётности заключены в скобки.

Применение

Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли.

Имея высокую плотность и атомный вес, U-238 пригоден для изготовления из него оболочек заряда рефлектора в устройствах синтеза и деления. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов; непосредственно при делении ядер оболочки быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления U-238 энергиями.

U-238 имеет интенсивность спонтанного деления в 35 раз более высокую, чем U-235, 5.51 делений/с*кг. Это делает невозможным применение его в качестве оболочки заряда рефлектора в пушечных бомбах, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон.

Чистый U-238 имеет удельную радиоактивность 0.333 микрокюри/г.

Важная область применения этого изотопа урана - производство плутония-239. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом U-238 нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.

Цепочка распада урана-238

Изотоп уран-238, его в природном уране больше, чем 99 %. Этот изотоп является и самым устойчивым, тепловыми нейтронами его ядро расщепить нельзя. Для того, чтобы разделить 238U, нейтрону нужна дополнительная кинетическая энергия 1.4 МэВ. Ядерный реактор из чистого урана-238 ни при каких условиях работать не будет.

Атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (б-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка, в конце концов, оканчивается стабильным нуклидом свинца (смотреть рисунок № 7, приложение Б).

Важнейшим обстоятельством для ядерной энергетики оказывается то, что наиболее распространённый изотоп урана238U тоже является потенциальным источником ядерного горючего. И Сциллард, и Ферми были правы, предполагая, что поглощение нейтронов ураном приведёт к образованию новых элементов. Действительно, при столкновении с тепловым нейтроном уран-238 не делится, вместо этого ядро поглощает нейтрон. В среднем за 23.5 минуты один из нейтронов в ядре превращается в протон (с вылетом электрона, реакция в - распада), и ядроурана-239 становится ядром нептуния-239 (239Np). Через 2.4 суток происходит второй в - распад и образуется плутоний-239 (239Pu).

В результате последовательного поглощения нейтронов в ядерном реакторе могут быть наработаны элементы ещё более тяжёлые, чем плутоний.

В природных минералах и урановой руде обнаруживались только микроколичества 239Pu, 244Pu и 237Np, так что в естественной среде трансурановые элементы (более тяжёлые, чем уран), практически не встречаются.

Изотопы урана, существующие в природе, не совсем стабильны по отношению к б-распаду и спонтанному делению, однако распадаются очень медленно: период полураспада урана-238 равен 4.5 миллиардам лет, а урана-235 - 710 миллионам лет. Из-за малой частоты ядерных реакций такие долгоживущие изотопы не являются опасными источниками радиации. Слиток природного урана можно держать в руках без вреда для здоровья. Его удельная активность равна 0.67 мКи/кг (Ки - кюри, внесистемная единица активности, равная 3.7*1010распадов за секунду).


Природный уран состоит из смеси трёх изотопов: 238U - 99,2739 % (период полураспада T 1/2 = 4,468×109 лет), 235U - 0,7024 % (T 1/2 = 7,038×108 лет) и 234U - 0,0057 % (T 1/2 = 2,455×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U.

Радиоактивность природного урана обусловлена в основном изотопами 238U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U.

Известно 11 искусственных радиоактивных изотопов урана с массовыми числами от 227 до 240. Наиболее долгоживущий из них - 233U (T 1/2 = 1,62×105лет) получается при облучении ториянейтронами и способен к спонтанному делению тепловыми нейтронами.

Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца206Pb и 207Pb.

В природных условиях распространены в основном изотопы 234U: 235U: 238U = 0,0054: 0,711: 99,283. Половина радиоактивности природного урана обусловлена изотопом 234U. Изотоп 234U образуется за счёт распада 238U. Для двух последних в отличие от других пар изотопов и независимо от высокой миграционной способности урана характерно географическое постоянство отношенияU238/U235=137,88. Величина этого отношения зависит от возраста урана. Многочисленные натурные измерения показали его незначительные колебания. Так в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959 −1,0042, в солях - 0,996 - 1,005. В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30 - 138,51; причём различие между формами UIV и UVI не установлено; в сфене - 138,4. В отдельных метеоритах выявлен недостаток изотопа 235U. Наименьшая его концентрация в земных условиях найдена в 1972 г. французским исследователем Бужигесом в местечке Окло в Африке(месторождение в Габоне). Так в нормальном уране содержится 0,7025 % урана 235U, тогда как в Окло оно уменьшаются до 0,557 %. Это послужило подтверждением гипотезы о наличии природного ядерного реактора, ведущего к выгоранию изотопа, предсказанной Джордж Ветрилл (George W. Wetherill) из Калифорнийского университета в ЛосАнджелесе и Марк Ингрэмом (Mark G. Inghram) из Чикагского университета и Полом Курода (Paul K. Kuroda), химиком из Университета Арканзаса, ещё в 1956 г. описавшим процесс. Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и др. В настоящее время известно около 17 природных ядерных реакторов.

Получение

Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия - выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидомнатрия).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - экстракция и ионный обмен - позволяют решить эту проблему.

Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана - десятые доли грамма на литр).

После этих операций уран переводят в твёрдое состояние - в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов - бора, кадмия, гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO3, которую восстанавливают водородом до UO2.

На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.

Обеднённый уран

После извлечения 235U и 234U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6).

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Из-за того, что основное использование урана - производство энергии, обеднённый уран - малополезный продукт с низкой экономической ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Физиологическое действие

В микроколичествах (10−5-10−8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10−7г.

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжелые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Добыча урана в мире

10 стран, ответственных за 94 % мировой добычи урана

Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41 250 тонн урана (в 2003 - 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок). Добыча по странам в тоннах по содержанию U на 2005-2006 гг. (смотреть таблицу № 13, приложение А).

Добыча в России

В СССР основными уранорудными регионами были Украина (месторождение Желтореченское, Первомайское и др.), Казахстан (Северный - Балкашинское рудное поле и др.; Южный - Кызылсайское рудное поле и др.; Восточный; все они принадлежат преимущественно вулканогенно -гидротермальному типу); Забайкалье (Антей, Стрельцовское и др.); Средняя Азия, в основном Узбекистан с оруденениями в чёрных сланцах с центром в г. Учкудук. Имеется масса мелких рудопроявлений и проявлений. В России основным урановорудным регионом осталось Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

Добыча в Казахстане

В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21% и 2 место в мире). Общие ресурсы урана порядка 1,5 млн. тонн, из них около 1,1 млн. тонн можно добывать методом подземного выщелачивания.

В 2009 году Казахстан вышел на первое место в мире по добыче урана (добыто 13 500 тонн).

Добыча на Украине

Основное предприятие - Восточный горно-обогатительный комбинат в городе Жёлтые Воды.

Применение

Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли.

Имея высокую плотность и атомный вес, U-238 пригоден для изготовления из него оболочек заряда рефлектора в устройствах синтеза и деления. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов; непосредственно при делении ядер оболочки быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления U-238 энергиями.

U-238 имеет интенсивность спонтанного деления в 35 раз более высокую, чем U-235, 5.51 делений/с*кг. Это делает невозможным применение его в качестве оболочки заряда рефлектора в пушечных бомбах, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон.

Чистый U-238 имеет удельную радиоактивность 0.333 микрокюри/г.

Важная область применения этого изотопа урана - производство плутония-239. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом U-238 нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.

Цепочка распада урана-238

Изотоп уран–238, его в природном уране больше, чем 99 %. Этот изотоп является и самым устойчивым, тепловыми нейтронами его ядро расщепить нельзя. Для того, чтобы разделить 238U, нейтрону нужна дополнительная кинетическая энергия 1.4 МэВ. Ядерный реактор из чистого урана–238 ни при каких условиях работать не будет.

Атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка, в конце концов, оканчивается стабильным нуклидом свинца (смотреть рисунок № 7, приложение Б).

Важнейшим обстоятельством для ядерной энергетики оказывается то, что наиболее распространённый изотоп урана238U тоже является потенциальным источником ядерного горючего. И Сциллард, и Ферми были правы, предполагая, что поглощение нейтронов ураном приведёт к образованию новых элементов. Действительно, при столкновении с тепловым нейтроном уран-238 не делится, вместо этого ядро поглощает нейтрон. В среднем за 23.5 минуты один из нейтронов в ядре превращается в протон (с вылетом электрона, реакция β - распада), и ядроурана-239 становится ядром нептуния-239 (239Np). Через 2.4 суток происходит второй β - распад и образуется плутоний-239 (239Pu).

В результате последовательного поглощения нейтронов в ядерном реакторе могут быть наработаны элементы ещё более тяжёлые, чем плутоний.

В природных минералах и урановой руде обнаруживались только микроколичества 239Pu, 244Pu и 237Np, так что в естественной среде трансурановые элементы (более тяжёлые, чем уран), практически не встречаются.

Изотопы урана, существующие в природе, не совсем стабильны по отношению к α-распаду и спонтанному делению, однако распадаются очень медленно: период полураспада урана-238 равен 4.5 миллиардам лет, а урана-235 – 710 миллионам лет. Из-за малой частоты ядерных реакций такие долгоживущие изотопы не являются опасными источниками радиации. Слиток природного урана можно держать в руках без вреда для здоровья. Его удельная активность равна 0.67 мКи/кг (Ки – кюри, внесистемная единица активности, равная 3.7*1010распадов за секунду).



Изучая явление радиоактивности, каждый ученый обращается к такой важнейшей его характеристике как период полураспада. Как известно, гласит, что каждую секунду в мире происходит распад атомов, при этом количественная характеристика этих процессов напрямую связана с количеством имеющихся атомов. Если за определенный период времени произойдет распад половины от всего имеющегося в наличии количества атомов, то распад ½ от оставшихся атомов потребует такого же количества времени. Именно этот временной промежуток и называется периодом полураспада. У разных элементов он различен - от тысячных долей миллисекунды до миллиардов лет, как, например, в случае, когда речь идет про период полураспада урана.

Уран, как самый тяжелый из всех существующих в естественном состоянии элементов на Земле, является вообще самым прекрасным объектом для изучения процесса радиоактивности. Этот элемент был открыт еще в 1789 году немецким ученым М. Клапротом, который дал ему название в честь недавно открытой планеты Уран. То, что уран радиоактивен, было совершенно случайно установлено в конце XIX века французским химиком А. Беккерелем.

Урана рассчитывается по той же формуле, что и аналогичные периоды других радиоактивных элементов:

T_{1/2} = au ln 2 = frac{ln 2}{lambda},

где «au» - среднее время существования атома, «lambda» - основная постоянная распада. Так как ln 2 равен примерно 0,7, то период полураспада лишь на 30% короче в среднем, чем общее время жизни атома.

Несмотря на то, что на сегодняшний день ученым известно 14 изотопов урана, в природе их встречаются только три: уран-234, уран-235 и уран-238. урана различен: так для U-234 он составляет «всего» 270 тысяч лет, а период полураспада урана-238 превышает 4,5 миллиарда. Период полураспада урана-235 находится в «золотой середине» - 710 миллионов лет.

Стоит отметить, что радиоактивность урана в естественных условиях достаточно высока и позволяет, к примеру, засветить фотопластинки в течение всего лишь часа. В то же время стоит отметить, что в из всех изотопов урана только U-235 пригоден для изготовления начинки для Все дело в том, что период полураспада урана-235 в промышленных условиях менее интенсивен, чем его «собратьев», поэтому и выход ненужных нейтронов здесь минимален.

Период полураспада урана-238 значительно превышает 4 миллиарда лет, однако и он сейчас активно используется в атомной промышленности. Так, как для того, чтобы запустить цепную реакцию по делению тяжелых ядер этого элемента, необходимо значительное количество энергии нейтронов. Уран-238 используют в качестве защиты в аппаратах деления и синтеза. Однако большая часть добытого урана-238 используется для синтеза плутония, применяемого в ядерном оружии.

Длительность периода полураспада урана ученые используют для того, чтобы рассчитать возраст отдельных минералов и небесных тел в целом. Урановые часы представляют собой достаточно универсальный механизм для подобного рода расчетов. В то же время, чтобы возраст был рассчитан более или менее точно, необходимо знать не только количество урана в тех или иных породах, но и соотношение урана и свинца как конечного продукта, в который превращаются ядра урана.

Есть еще один способ расчета пород и минералов, он связан с так называемым спонтанным Как известно, в результате спонтанного деления урана в естественных условиях его частицы с колоссальной силой бомбардируют рядом находящиеся вещества, оставляя за собой особые следы - треки.

Именно по количеству этих треков, зная при этом период полураспада урана, ученые и делают вывод о возрасте того или иного твердого тела - будь то древняя порода или относительно «молодая» ваза. Все дело в том, что возраст объекта прямо пропорционален количественному показателю атомов урана, ядра которого бомбардировали его.

Ура́н-235 (англ. uranium-235), историческое название актиноура́н (лат. Actin Uranium, обозначается символом AcU ) - радиоактивный нуклид химического элемента урана с атомным номером 92 и массовым числом 235. Изотопная распространённость урана-235 в природе составляет 0,7200(51) %. Является родоначальником радиоактивного семейства 4n+3, называемого рядом актиния. Открыт в 1935 году Артуром Демпстером (англ. Arthur Jeffrey Dempster).

В отличие от другого, наиболее распространенного изотопа урана 238U, в 235U возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии.

Активность одного грамма данного нуклида составляет приблизительно 80 кБк.

  • 1 Образование и распад
  • 2 Вынужденное деление
  • 2.1 Цепная ядерная реакция
  • 3 Изомеры
  • 4 Применение
  • 5 См. также
  • 6 Примечания
  • Образование и распад

    Уран-235 образуется в результате следующих распадов:

    • β−-распад нуклида 235Pa (период полураспада составляет 24,44(11) мин):
    • K-захват, осуществляемый нуклидом 235Np (период полураспада составляет 396,1(12) дня):
    • α-распад нуклида 239Pu (период полураспада составляет 2,411(3)·104 лет):

    Распад урана-235 происходит по следующим направлениям:

    • α-распад в 231Th (вероятность 100 %, энергия распада 4 678,3(7) кэВ):
    • Спонтанное деление (вероятность 7(2)·10−9 %);
    • Кластерный распад с образованием нуклидов 20Ne, 25Ne и 28Mg (вероятности соответственно составляют 8(4)·10−10 %, 8·10−10 %, 8·10−10 %):

    Вынужденное деление

    Основная статья: Деление ядра Кривая выхода продуктов деления урана-235 для различных энергий делящих нейтронов.

    В начале 1930-х гг. Энрико Ферми проводил облучение урана нейтронами, преследуя цель получить таким образом трансурановые элементы. Но в 1939 г. О. Ган и Ф. Штрассман смогли показать, что при поглощении нейтрона ядром урана происходит вынужденная реакция деления. Как правило, ядро делится на два осколка, при этом высвобождается 2-3 нейтрона (см. схему).

    В продуктах деления урана-235 было обнаружено около 300 изотопов различных элементов: от Z=30 (цинк) до Z=64 (гадолиний). Кривая зависимости относительного выхода изотопов, образующихся при облучении урана-235 медленными нейтронами, от массового числа - симметрична и по форме напоминает букву «M». Два выраженных максимума этой кривой соответствуют массовым числам 95 и 134, а минимум приходится на диапазон массовых чисел от 110 до 125. Таким образом, деление урана на осколки равной массы (с массовыми числами 115-119) происходит с меньшей вероятностью, чем асимметричное деление, такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра.

    Один из вариантов вынужденного деления урана-235 после поглощения нейтрона (схема)

    Осколки, образующиеся при делении ядра урана, в свою очередь являются радиоактивными, и подвергаются цепочке β−-распадов, при которых постепенно в течение длительного времени выделяется дополнительная энергия. Средняя энергия, выделяющаяся при распаде одного ядра урана-235 с учётом распада осколков, составляет приблизительно 202,5 МэВ = 3,244·10−11 Дж, или 19,54 ТДж/моль = 83,14 ТДж/кг.

    Деление ядер - лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора.

    Цепная ядерная реакция

    Основная статья: Цепная ядерная реакция

    При распаде одного ядра 235U обычно испускается от 1 до 8 (в среднем — 2.5) свободных нейтрона. Каждый нейтрон, образовавшийся при распаде ядра 235U, при условии взаимодействия с другим ядром 235U, может вызвать новый акт распада, это явление называется цепной реакцией деления ядра.

    Гипотетически, число нейтронов второго поколения (после второго этапа распада ядер) может превышать 3² = 9. С каждым последующим этапом реакции деления количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата 235U, или будучи захваченными как самим изотопом 235U с превращением его в 236U, так и иными материалами (например, 238U, или образовавшимися осколками деления ядер, такими как 149Sm или 135Xe).

    Если в среднем каждый акт деления порождает еще один новый акт деления, то реакция становится самоподдерживающейся; это состояние называется критическим. (см. также Коэффициент размножения нейтронов)

    В реальных условиях достичь критического состояния урана не так просто, поскольку на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из 235U, 99,2745 % составляет 238U, который поглощает нейтроны, образующиеся при делении ядер 235U. Это приводит к тому, что в природном уране в настоящее время цепная реакция деления очень быстро затухает. Осуществить незатухающую цепную реакцию деления можно несколькими основными путями:

    • Увеличить объём образца (для выделенного из руды урана возможно достижение критической массы за счёт увеличения объёма);
    • Осуществить разделение изотопов, повысив концентрацию 235U в образце;
    • Уменьшить потерю свободных нейтронов через поверхность образца с помощью применения различного рода отражателей;
    • Использовать вещество — замедлитель нейтронов для повышения концентрации тепловых нейтронов.

    Изомеры

    Известен единственный изомер 235Um со следующими характеристиками:

    • Избыток массы: 40 920,6(1,8) кэВ
    • Энергия возбуждения: 76,5(4) эВ
    • Период полураспада: 26 мин
    • Спин и чётность ядра: 1/2+

    Распад изомерного состояния осуществляется путём изомерного перехода в основное состояние.

    Применение

    • Уран-235 используется в качестве топлива для ядерных реакторов, в которых осуществляется управляемая цепная ядерная реакция деления;
    • Уран с высокой степенью обогащения применяется для создания ядерного оружия. В этом случае для высвобождения большого количества энергии (взрыва) используется неуправляемая цепная ядерная реакция.

    См. также

    • Изотопы урана
    • Разделение изотопов

    Примечания

    1. 12345 G. Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729 : 337-676. DOI:10.1016/j.nuclphysa.2003.11.003. Bibcode: 2003NuPhA.729..337A.
    2. 123456789101112 G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729 : 3–128. DOI:10.1016/j.nuclphysa.2003.11.001. Bibcode: 2003NuPhA.729….3A.
    3. Гофман К. Можно ли сделать золото? - 2-е изд. стер. - Л.: Химия, 1987. - С. 130. - 232 с. - 50 000 экз.
    4. Today in science history
    5. 123 Фиалков Ю. Я. Применение изотопов в химии и химической промышленности. - Киев: Техніка, 1975. - С. 87. - 240 с. - 2 000 экз.
    6. Table of Physical and Chemical Constants, Sec 4.7.1: Nuclear Fission. Kaye & Laby Online. Архивировано из первоисточника 8 апреля 2012.
    7. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. - М.: Энергоатомиздат, 1982. - С. 512.

    Уран-235 Информация о

    Уран-235
    Уран-235

    Уран-235 Информация Видео


    Уран-235 Просмотр темы.
    Уран-235 что, Уран-235 кто, Уран-235 объяснение

    There are excerpts from wikipedia on this article and video

    Уран представляет собой радиоактивный металл. В природе уран состоит из трех изотопов: уран-238, уран-235 и уран-234. Наивысший уровень стабильности фиксируется у урана-238.

    ХарактеристикаЗначение
    Общие сведения
    Название, символ Уран-238, 238U
    Альтернативные названия ура́н оди́н, UI
    Нейтронов 146
    Протонов 92
    Свойства нуклида
    Атомная масса 238,0507882(20) а. е. м.
    Избыток массы 47 308,9(19) кэВ
    Удельная энергия связи (на нуклон) 7 570,120(8) кэВ
    Изотопная распространённость 99,2745(106) %
    Период полураспада 4,468(3)·109 лет
    Продукты распада 234Th, 238Pu
    Родительские изотопы 238Pa (β−)
    242Pu (α)
    Спин и чётность ядра 0+
    Канал распада Энергия распада
    α-распад 4,2697(29) МэВ
    SF
    ββ 1,1442(12) МэВ

    Радиоактивный распад урана

    Радиоакти́вным распа́дом называют процесс внезапного изменения состава или внутреннего строения атомных ядер, которые отличаются нестабильностью. При этом испускаются элементарные частицы, гамма-кванты и/или ядерные фрагменты. Радиоактивные вещества содержат радиоактивное ядро. Получившееся вследствие радиоактивного распада дочернее ядро может тоже стать радиоактивным и спустя определенное время подвергается распаду. Этот процесс происходит до того момента, пока не образуется стабильное ядро, лишенное радиоактивности. Э. Резерфорд методом эксперимента в 1899 доказал, что урановые соли испускают три вида лучей:

    • α-лучи — поток положительно заряженных частиц
    • β-лучи — поток отрицательно заряженных частиц
    • γ-лучи — не создают отклонений в магнитном поле.
    Вид излученияНуклидПериод полураспада
    Ο Уран — 238 U 4,47 млрд. лет
    α ↓
    Ο Торий — 234 Th 24.1 суток
    β ↓
    Ο Протактиний — 234 Pa 1.17 минут
    β ↓
    Ο Уран — 234 U 245000 лет
    α ↓
    Ο Торий — 230 Th 8000 лет
    α ↓
    Ο Радий — 226 Ra 1600 лет
    α ↓
    Ο Полоний — 218 Po 3,05 минут
    α ↓
    Ο Свинец — 214 Pb 26,8 минут
    β ↓
    Ο Висмут — 214 Bi 19,7 минут
    β ↓
    Ο Полоний — 214 Po 0,000161 секунд
    α ↓
    Ο Свинец — 210 Pb 22,3 лет
    β ↓
    Ο Висмут — 210 Bi 5,01 суток
    β ↓
    Ο Полоний — 210 Po 138,4 суток
    α ↓
    Ο Свинец — 206 Pb стабильный

    Радиоактивность урана

    Естественная радиоактивность - вот что отличает радиоактивный уран от прочих элементов. Атомы урана не зависимо ни от каких факторов и условий постепенно изменяются.

    Уран (элемент)

    При этом испускаются невидимые лучи. После трансформаций, которые происходят с атомами урана, получается иной радиоактивный элемент и процесс повторяется. Он будет повторять столько раз, сколько необходимо, чтобы получился не радиоактивный элемент. К примеру, некоторые цепочки превращений насчитывают до 14 стадий. При этом промежуточным элементом является радий, а последняя стадия - образование свинца. Этот металл не является радиоактивным элементом, поэтому ряд превращений прерывается. Однако для полного превращения урана в свинец необходимо несколько миллиардов лет.
    Радиоактивная руда урана часто становится причиной отравлений на предприятиях, занимающихся добычей и переработкой уранового сырья. В человеческом организме уран — общеклеточный яд. Он поражает главным образом почки, но встречаются и поражения печени и желудочно-кишечного тракта.
    Уран не имеет полностью стабильных изотопов. Наибольший период жизни отмечается у урана-238. Полу распад урана-238 происходит на протяжении 4,4 млрд лет. Чуть меньше одного миллиарда лет идет полу распад урана-235 — 0,7 млрд лет. Уран-238 занимает свыше 99% всего объема природного урана. Вследствие его колоссального периода полураспада радиоактивность этого металла не высокая, к примеру, альфа-частицы не могут проникнуть через ороговевший слой кожи человека. После ряда проведенных исследований ученые выяснили, что главным источником радиации является не сам уран, а образуемый им газ радон, а также продукты его распада, попадающие в человеческий организм во время дыхания.

    радиоактивный уран, радиоактивность, радиоактивный распад

    Изотопы и получение урана

    Природный уран состоит из смеси трёх изотопов: 238U- 99,2739 % (период полураспада T 1/2 = 4,468×109 лет), 235U - 0,7024 % (T 1/2 = 7,038×108 лет) и 234U - 0,0057 % (T 1/2 = 2,455×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U.

    Радиоактивность природного урана обусловлена в основном изотопами 238U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U.

    Известно 11 искусственных радиоактивных изотопов урана с массовыми числами от 227 до 240. Наиболее долгоживущий из них - 233U (T 1/2 = 1,62×105лет) получается при облучении ториянейтронами и способен к спонтанному делению тепловыми нейтронами.

    Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца206Pb и 207Pb.

    В природных условиях распространены в основном изотопы 234U: 235U: 238U = 0,0054: 0,711: 99,283. Половина радиоактивности природного урана обусловлена изотопом 234U. Изотоп 234U образуется за счёт распада 238U. Для двух последних в отличие от других пар изотопов и независимо от высокой миграционной способности урана характерно географическое постоянство отношенияU238/U235=137,88. Величина этого отношения зависит от возраста урана. Многочисленные натурные измерения показали его незначительные колебания. Так в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959 −1,0042, в солях - 0,996 - 1,005. В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30 - 138,51; причём различие между формами UIV и UVI не установлено; в сфене - 138,4. В отдельных метеоритах выявлен недостаток изотопа 235U. Наименьшая его концентрация в земных условиях найдена в 1972 г. французским исследователем Бужигесом в местечке Окло в Африке(месторождение в Габоне). Так в нормальном уране содержится 0,7025 % урана 235U, тогда как в Окло оно уменьшаются до 0,557 %. Это послужило подтверждением гипотезы о наличии природного ядерного реактора, ведущего к выгоранию изотопа, предсказанной Джордж Ветрилл (George W. Wetherill) из Калифорнийского университета в ЛосАнджелесе и Марк Ингрэмом (Mark G. Inghram) из Чикагского университета и Полом Курода (Paul K. Kuroda), химиком из Университета Арканзаса, ещё в 1956 г. описавшим процесс. Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и др. В настоящее время известно около 17 природных ядерных реакторов.

    Получение

    Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

    Следующая стадия - выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

    Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой.

    В этих случаях пользуются едким натром (гидроксидомнатрия).

    Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

    На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - экстракция и ионный обмен - позволяют решить эту проблему.

    Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

    Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана - десятые доли грамма на литр).

    После этих операций уран переводят в твёрдое состояние - в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов - бора, кадмия, гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO3, которую восстанавливают водородом до UO2.

    На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.

    Обеднённый уран

    После извлечения 235U и 234U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6).

    Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Из-за того, что основное использование урана - производство энергии, обеднённый уран - малополезный продукт с низкой экономической ценностью.

    В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

    Физиологическое действие

    В микроколичествах (10−5-10−8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10−7г.

    Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжелые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

    Добыча урана в мире

    10 стран, ответственных за 94 % мировой добычи урана

    Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41 250 тонн урана (в 2003 - 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок). Добыча по странам в тоннах по содержанию U на 2005-2006 гг. (смотреть таблицу № 13, приложение А).

    Добыча в России

    В СССР основными уранорудными регионами были Украина (месторождение Желтореченское, Первомайское и др.), Казахстан (Северный - Балкашинское рудное поле и др.; Южный - Кызылсайское рудное поле и др.; Восточный; все они принадлежат преимущественно вулканогенно -гидротермальному типу); Забайкалье (Антей, Стрельцовское и др.); Средняя Азия, в основном Узбекистан с оруденениями в чёрных сланцах с центром в г. Учкудук. Имеется масса мелких рудопроявлений и проявлений. В России основным урановорудным регионом осталось Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

    Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

    Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

    Добыча в Казахстане

    В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21% и 2 место в мире). Общие ресурсы урана порядка 1,5 млн. тонн, из них около 1,1 млн. тонн можно добывать методом подземного выщелачивания.

    В 2009 году Казахстан вышел на первое место в мире по добыче урана (добыто 13 500 тонн).

    Добыча на Украине

    Основное предприятие - Восточный горно-обогатительный комбинат в городе Жёлтые Воды.

    Применение

    Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли.

    Имея высокую плотность и атомный вес, U-238 пригоден для изготовления из него оболочек заряда рефлектора в устройствах синтеза и деления. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов; непосредственно при делении ядер оболочки быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления U-238 энергиями.

    U-238 имеет интенсивность спонтанного деления в 35 раз более высокую, чем U-235, 5.51 делений/с*кг. Это делает невозможным применение его в качестве оболочки заряда рефлектора в пушечных бомбах, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон.

    Чистый U-238 имеет удельную радиоактивность 0.333 микрокюри/г.

    Важная область применения этого изотопа урана — производство плутония-239. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом U-238 нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.

    Цепочка распада урана-238

    Изотоп уран–238, его в природном уране больше, чем 99 %. Этот изотоп является и самым устойчивым, тепловыми нейтронами его ядро расщепить нельзя. Для того, чтобы разделить 238U, нейтрону нужна дополнительная кинетическая энергия 1.4 МэВ. Ядерный реактор из чистого урана–238 ни при каких условиях работать не будет.

    Атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка, в конце концов, оканчивается стабильным нуклидом свинца (смотреть рисунок № 7, приложение Б).

    Важнейшим обстоятельством для ядерной энергетики оказывается то, что наиболее распространённый изотоп урана238U тоже является потенциальным источником ядерного горючего. И Сциллард, и Ферми были правы, предполагая, что поглощение нейтронов ураном приведёт к образованию новых элементов.

    Изотопы урана

    Действительно, при столкновении с тепловым нейтроном уран-238 не делится, вместо этого ядро поглощает нейтрон. В среднем за 23.5 минуты один из нейтронов в ядре превращается в протон (с вылетом электрона, реакция β — распада), и ядроурана-239 становится ядром нептуния-239 (239Np). Через 2.4 суток происходит второй β — распад и образуется плутоний-239 (239Pu).

    В результате последовательного поглощения нейтронов в ядерном реакторе могут быть наработаны элементы ещё более тяжёлые, чем плутоний.

    В природных минералах и урановой руде обнаруживались только микроколичества 239Pu, 244Pu и 237Np, так что в естественной среде трансурановые элементы (более тяжёлые, чем уран), практически не встречаются.

    Изотопы урана, существующие в природе, не совсем стабильны по отношению к α-распаду и спонтанному делению, однако распадаются очень медленно: период полураспада урана-238 равен 4.5 миллиардам лет, а урана-235 – 710 миллионам лет. Из-за малой частоты ядерных реакций такие долгоживущие изотопы не являются опасными источниками радиации. Слиток природного урана можно держать в руках без вреда для здоровья. Его удельная активность равна 0.67 мКи/кг (Ки – кюри, внесистемная единица активности, равная 3.7*1010распадов за секунду).

    Получение — уран

    Cтраница 1

    Получение урана из золы отечественного угля — писала газета — можно считать разрешенным вопросом. В 1 т золы некоторых углей содержится атомная энергия, эквивалентная 6 тыс. т угля.  

    Получение урана, золота; разделение продуктов расщепления урана; получение цветных металлов и редкоземельных элементов.  

    Получению урана и тория предшествует сложная комплексная переработка рудного сырья.  

    Для получения урана твердый UF4 восстанавливают кальцием или магнием.  

    Применяется для получения урана, тория и других металлов, а также в органическом синтезе.  

    Энергозатраты на получение урана идеальной закалки реакционной смеси составляют 71 эВ на атом металла.  

    Главным источником получения урана служит минерал уранинит и его разновидности — смоляная обманка, урановые слюдки, настуран, урановая чернь. Большое значение для получения урана и его соединений имеют урано-ванадиевые, урано-фосфорные, урано-мышьяково-кислые соли кальция, меди, бария, получившие название урановых слюдок.  

    В последние годы для получения урана применяют подземное выщелачивание с последующей очисткой растворов. Для подземного выщелачивания применяют серную кислоту и карбонатные растворы.

    Другим крупным потенциальным источником получения урана в США являются сланцы, залегающие на территории штатов Теннесси, Кентукки, Индиана, Иллинойс и Огайо.  

    Известно много других способов получения четы-рехфтористого урана, в том числе реакция взаимодействия фтористого водорода с компактным металлическим ураном в атмосфере водорода, начинающаяся при 250 С.  

    Методики расчета тигельных печей для получения урана практически не существует. При конструировании их можно лишь учесть такие факторы, как количества тепла, выделяемого по реакции и теряемого в окружающее пространство, а также (в случае магниетермического восстановления) количество тепла, которое необходимо подводить с помощью внешних нагревателей.  

    В Японии разработана новая технология получения урана из раствора фосфорной кислоты, используемой для производства фосфорных удобрений. До сооружения завода по извлечению урана из 3 — 4 млн. т фосфатов, импортируемых ежегодно Японией в качестве сырья для производства удобрений, предполагается сооружение опытной установки.  

    Следует подчеркнуть, что процесс получения урана не так прост, как он здесь описан. Следует помнить, что все процессы проводятся в сложной аппаратуре, изготовленной из специальных материалов. При этом должна соблюдаться очень точная дозировка реагентов и поддерживаться необходимая температура. Процесс производства урана требзтет большого количества исключительно чистых реактивов, которые должны быть чище, чем так называемые химически чистые вещества.  

    Страницы:      1    2    3    4