Объем прямоугольного параллелепипеда определяется. Формулы вычисления объёма прямоугольника и параллелепипеда

Школа - это необъятная чаша знаний, которая включает в себя множество дисциплин, которые могут заинтересовать любого ребенка. Математика - царица точных наук. Строгая и дисциплинированная, она не терпит неточностей. Даже повзрослев, в обычной жизни мы можем столкнуться с разными математическими проблемами: вычисление квадратных метров для укладки плитки в ванной, кубических метров для определения объема бака и т. д., чего уж говорить о школьниках, которые только-только начинают свой математический путь.

Очень часто, начав изучать математику, точнее, геометрию, ученики путают плоские фигуры с объемными. Куб называют квадратом, шар - кругом, параллелепипед обычным прямоугольником. И здесь есть свои тонкости.

Сложно помочь ребенку в выполнении домашнего задания, не зная точно, объем или площадь какой фигуры - плоской или же объемной, нужно найти. Невозможно найти объем плоских фигур, таких как квадрат, круг, прямоугольник. В их случае можно найти лишь площадь. Прежде чем переходить к выполнению задачи, следует подготовить нужные атрибуты:

  1. Линейка, для того чтобы измерить необходимые нам данные.
  2. Калькулятор, для того чтобы в дальнейшем подсчитать расчеты.

Для начала рассмотрим само понятие объемного прямоугольника. Это параллелепипед. В его основании находится параллелограмм. Так как таковых у него шесть, следовательно все параллелограммы являются гранями параллелепипеда.

Что касается его граней, они могут отличаться, то есть, если прямые боковые грани представляют собой прямоугольники, тогда это прямой параллелепипед, ну, а если все шесть граней являются прямоугольниками, то перед нами прямоугольный параллелепипед.

  1. После прочтения задачи, нужно определить что именно следует найти; длину фигуры, объем или же площадь.
  2. Какая именно часть фигуры рассматривается в задаче - ребро, вершина, грань, сторона, а может быть, вся фигура целиком?

Определив все поставленные задачи, можно переходить непосредственно к вычислениям. Для этого нам понадобятся специальные формулы. Итак, для того чтобы найти объем прямоугольного параллелепипеда перемножается между собой длина, ширина и высота (то есть толщина фигуры). Формула вычисления объема прямоугольного параллелепипеда следующая:

V=a*b*h ,

V является объемом параллелепипеда, где a - его длина b - ширина и h - высота соответственно.

Важно! Перед началом перевести все измерения в одну единицу исчисления. Ответ должен получится непременно в кубических единицах.

Пример первый

Определим объем бака для спирта, при следующих размерах:

  • длина три метра;
  • ширина два метра пятьдесят сантиметров;
  • высота триста сантиметров.

Для начала обязательно согласовываем единицы измерения и перемножаем их:

Перемножив данные, мы получим ответ в кубических метрах, то есть 3*2.5*3= 22.5 метра в кубе.

Пример второй

Шкаф имеет высоту четыре метра, ширину семьдесят сантиметров и глубину 80 сантиметров.

Зная формулу вычисления можно произвести умножение. Но не стоит торопиться, как и было сказано вначале, следует согласовать между собой единицы, то есть при желании вычислять в сантиметрах перевести все исчисления в сантиметры, ежели в метрах, то в метры. Сделаем оба варианта.

Итак, начнем с сантиметров. Переводим метры в сантиметры:

V = 400 * 70 * 80;

V = 2240000 сантиметров в кубе.

Теперь метры:

V = 4* 0.7 * 0.8;

V = 2.24 метра в кубе.

Исходя из вышеперечисленных манипуляции, очевидно, что работа с кубическими метрами более легка и понятна.

Пример третий

Дана комната, объем которой должен быть вычислен. Длина этой комнаты равна пяти метрам, ширина - трем, а высота потолка 2,5. Опять используем известную нам формулу:

V = a * b * h;

где, а длина комната и равна 5, b- ширина и равна 3 и h высота, которая равна 2.5

Так как все единицы даны в метрах, можно сразу приступать к вычислениям. Перемножая между собой a, b и h:

V = 5 * 3 * 2.5;

V = 37.5 метра в кубе.

Итак, в качестве заключения, можно сказать, что зная основные математические правила для вычисления объема или же площади фигур, а также правильно определив фигуры (плоские или же объемные), умея переводить сантиметры в метры и наоборот - можно облегчить изучение геометрии вашему ребенку, что не может не сделать этот процесс более интересным и привлекательным, ведь все накопленные знания в школе, могут быть успешно использованы в самой обычной бытовой жизни в будущем.

Не получили ответ на свой вопрос? Предложите авторам тему.

Часто ученики возмущенно спрашивают: «Как мне в жизни это пригодится?». На любую тему каждого предмета. Не становится исключением и тема про объем параллелепипеда. И вот здесь как раз можно сказать: «Пригодится».

Как, например, узнать, поместится ли в почтовую коробку посылка? Конечно, можно методом проб и ошибок выбрать подходящую. А если такой возможности нет? Тогда на выручку придут вычисления. Зная вместимость коробки, можно рассчитать объем посылки (хотя бы приблизительно) и ответить на поставленный вопрос.

Параллелепипед и его виды

Если дословно перевести его название с древнегреческого, то получится, что это фигура, состоящая из параллельных плоскостей. Существуют такие равносильные определения параллелепипеда:

  • призма с основанием в виде параллелограмма;
  • многогранник, каждая грань которого - параллелограмм.

Его виды выделяются в зависимости от того, какая фигура лежит в его основании и как направлены боковые ребра. В общем случае говорят о наклонном параллелепипеде , у которого основание и все грани — параллелограммы. Если у предыдущего вида боковые грани станут прямоугольниками, то его нужно будет называть уже прямым . А у прямоугольного и основание тоже имеет углы по 90º.

Причем последний в геометрии стараются изображать так, чтобы было заметно, что все ребра параллельны. Здесь, кстати, наблюдается основное отличие математиков от художников. Последним важно передать тело с соблюдением закона перспективы. И в этом случае параллельность ребер совсем незаметна.

О введенных обозначениях

В приведенных ниже формулах справедливы обозначения, указанные в таблице.

Формулы для наклонного параллелепипеда

Первая и вторая для площадей:

Третья для того, чтобы вычислить объем параллелепипеда:

Так как основание - параллелограмм, то для расчета его площади нужно будет воспользоваться соответствующими выражениями.

Формулы для прямоугольного параллелепипеда

Аналогично первому пункту - две формулы для площадей:

И еще одна для объема:

Первая задача

Условие. Дан прямоугольный параллелепипед, объем которого требуется найти. Известна диагональ — 18 см - и то, что она образует углы в 30 и 45 градусов с плоскостью боковой грани и боковым ребром соответственно.

Решение. Чтобы ответить на вопрос задачи, потребуется узнать все стороны в трех прямоугольных треугольниках. Они дадут необходимые значения ребер, по которым нужно сосчитать объем.

Сначала нужно выяснить, где находится угол в 30º. Для этого нужно провести диагональ боковой грани из той же вершины, откуда чертилась главная диагональ параллелограмма. Угол между ними и будет тем, что нужен.

Первый треугольник, который даст одно из значений сторон основания, будет следующим. В нем содержатся искомая сторона и две проведенные диагонали. Он прямоугольный. Теперь потребуется воспользоваться отношением противолежащего катета (стороны основания) и гипотенузы (диагонали). Оно равно синусу 30º. То есть неизвестная сторона основания будет определяться как диагональ, умноженная на синус 30º или ½. Пусть она будет обозначена буквой «а».

Вторым будет треугольник, содержащий известную диагональ и ребро, с которым она образует 45º. Он тоже прямоугольный, и можно опять воспользоваться отношением катета к гипотенузе. Другими словами, бокового ребра к диагонали. Оно равно косинусу 45º. То есть «с» вычисляется как произведение диагонали на косинус 45º.

с = 18 * 1/√2 = 9 √2 (см).

В этом же треугольнике требуется найти другой катет. Это необходимо для того, чтобы потом сосчитать третью неизвестную - «в». Пусть она будет обозначена буквой «х». Ее легко вычислить по теореме Пифагора:

х = √(18 2 - (9√2) 2) = 9√2 (см).

Теперь нужно рассмотреть еще один прямоугольный треугольник. Он содержит уже известные стороны «с», «х» и ту, что нужно сосчитать, «в»:

в = √((9√2) 2 - 9 2 = 9 (см).

Все три величины известны. Можно воспользоваться формулой для объема и сосчитать его:

V = 9 * 9 * 9√2 = 729√2 (см 3).

Ответ: объем параллелепипеда равен 729√2 см 3 .

Вторая задача

Условие. Требуется найти объем параллелепипеда. В нем известны стороны параллелограмма, который лежит в основании, 3 и 6 см, а также его острый угол — 45º. Боковое ребро имеет наклон к основанию в 30º и равно 4 см.

Решение. Для ответа на вопрос задачи нужно взять формулу, которая была записана для объема наклонного параллелепипеда. Но в ней неизвестны обе величины.

Площадь основания, то есть параллелограмма, будет определена по формуле, в которой нужно перемножить известные стороны и синус острого угла между ними.

S о = 3 * 6 sin 45º = 18 * (√2)/2 = 9 √2 (см 2).

Вторая неизвестная величина — это высота. Ее можно провести из любой из четырех вершин над основанием. Ее найти можно из прямоугольного треугольника, в котором высота является катетом, а боковое ребро — гипотенузой. При этом угол в 30º лежит напротив неизвестной высоты. Значит, можно воспользоваться отношением катета к гипотенузе.

н = 4 * sin 30º = 4 * 1/2 = 2.

Теперь все значения известны и можно вычислить объем:

V = 9 √2 * 2 = 18 √2 (см 3).

Ответ: объем равен 18 √2 см 3 .

Третья задача

Условие. Найти объем параллелепипеда, если известно, что он прямой. Стороны его основания образуют параллелограмм и равны 2 и 3 см. Острый угол между ними 60º. Меньшая диагональ параллелепипеда равна большей диагонали основания.

Решение. Для того чтобы узнать объем параллелепипеда, воспользуемся формулой с площадью основания и высотой. Обе величины неизвестны, но их несложно вычислить. Первая из них высота.

Поскольку меньшая диагональ параллелепипеда совпадает по размеру с большей основания, то их можно обозначить одной буквой d. Больший угол параллелограмма равен 120º, поскольку с острым он образует 180º. Пусть вторая диагональ основания будет обозначена буквой «х». Теперь для двух диагоналей основания можно записать теоремы косинусов :

d 2 = а 2 + в 2 - 2ав cos 120º,

х 2 = а 2 + в 2 - 2ав cos 60º.

Находить значения без квадратов не имеет смысла, так как потом они будут снова возведены во вторую степень. После подстановки данных получается:

d 2 = 2 2 + 3 2 - 2 * 2 * 3 cos 120º = 4 + 9 + 12 * ½ = 19,

х 2 = а 2 + в 2 - 2ав cos 60º = 4 + 9 - 12 * ½ = 7.

Теперь высота, она же боковое ребро параллелепипеда, окажется катетом в треугольнике. Гипотенузой будет известная диагональ тела, а вторым катетом — «х». Можно записать Теорему Пифагора:

н 2 = d 2 - х 2 = 19 - 7 = 12.

Отсюда: н = √12 = 2√3 (см).

Теперь вторая неизвестная величина — площадь основания. Ее можно сосчитать по формуле, упомянутой во второй задаче.

S о = 2 * 3 sin 60º = 6 * √3/2 = 3√3 (см 2).

Объединив все в формулу объема, получаем:

V = 3√3 * 2√3 = 18 (см 3).

Ответ: V = 18 см 3 .

Четвертая задача

Условие. Требуется узнать объем параллелепипеда, отвечающего таким условиям: основание — квадрат со стороной 5 см; боковые грани являются ромбами; одна из вершин, находящихся над основанием, равноудалена от всех вершин, лежащих в основании.

Решение. Сначала нужно разобраться с условием. С первым пунктом про квадрат вопросов нет. Второй, про ромбы, дает понять, что параллелепипед наклонный. Причем все его ребра равны 5 см, поскольку стороны у ромба одинаковые. А из третьего становится ясно, что три диагонали, проведенные из нее, равны. Это две, которые лежат на боковых гранях, а последняя внутри параллелепипеда. И эти диагонали равны ребру, то есть тоже имеют длину 5 см.

Для определения объема будет нужна формула, записанная для наклонного параллелепипеда. В ней опять нет известных величин. Однако площадь основания вычислить легко, потому что это квадрат.

S о = 5 2 = 25 (см 2).

Немного сложнее обстоит дело с высотой. Она будет таковой в трех фигурах: параллелепипеде, четырехугольной пирамиде и равнобедренном треугольнике. Последним обстоятельством и нужно воспользоваться.

Поскольку она высота, то является катетом в прямоугольном треугольнике. Гипотенузой в нем будет известное ребро, а второй катет равен половине диагонали квадрата (высота - она же и медиана). А диагональ основания найти просто:

d = √(2 * 5 2) = 5√2 (см).

Высоту нужно будет сосчитать как разность второй степени ребра и квадрата половины диагонали и не забыть потом извлечь квадратный корень :

н = √ (5 2 - (5/2 * √2) 2) = √(25 - 25/2) = √(25/2) = 2,5 √2 (см).

V = 25 * 2,5 √2 = 62,5 √2 (см 3).

Ответ: 62,5 √2 (см 3).

Фигуры на рисунке 175, а и б состоят из равного количества одинаковых кубиков. О таких фигурах можно сказать, что их объемы равны. Прямоугольные параллелепипеды, изображенные на рисунке 175, в и г, состоят соответственно из 18 и 9 одинаковых кубиков. Поэтому можно сказать, что объем первого из них в два раза больше объема второго.

С такой величиной, как объем, вы часто встречаетесь в повседневной жизни: объем топливного бака, объем бассейна, объем классной комнаты, показатели потребления газа или воды на счетчиках и т.д.

Опыт подсказывает вам, что одинаковые емкости имеют равные объемы. Например, одинаковые бочки имеют равные объемы.

Если емкость разделить на несколько частей, то объем всей емкости равен сумме объемов ее частей. Например, объем двухкамерного холодильника равен сумме объемов его камер.

Эти примеры иллюстрируют следующие свойства объема фигуры .

1 ) Равные фигуры имеют равные объемы.

2 ) Объем фигуры равен сумме объемов фигур, из которых она состоит.

Как и в случаях с другими величинами (длина, площадь), следует ввести единицу измерения объема.

За единицу измерения объема выбираю куб, ребро которого равно единичному отрезку. Такой куб называют единичным .

кубическим миллиметром . Пишут 1 мм 3 .

Объем куба с ребром 1 см называю кубическим сантиметром . Пишут 1 см 3 .

Объем куба с ребром 1 мм называю кубическим дециметром . Пишут 1 дм 3 .

При измерении объемов жидкостей и газов 1 дм 3 называют литром . Пишут: 1 л. Итак, 1 л = 1 дм 3 .

Если объем красного кубика (см. рис. 175, д) принять за единицу, то объемы фигур на рисунке 175, а, б, в и г соответственно равны 5, 5, 18 и 9 кубических единиц.

Если длина, ширина и высота прямоугольного параллелепипеда соответственно равны 5 см, 6 см, 4 см, то этот параллелепипед можно разделить на 5 * 6 * 4 единичных кубов (рис. 176 ). Поэтому его объем равен 5 * 6 * 4 = 120 см 3 .

Объем прямоугольного параллелепипеда равен произведению трех его измерений.

V = abc

где V − объем, a, b, и c − измерения прямоугольного параллелепипеда, выраженные в одних и тех же единицах.

Поскольку у куба все ребра равны, то его объем вычисляют по формуле:

V = a 3

где a − длина ребра куба. Именно поэтому третью степень числа называют кубом числа.

Произведение длины a и ширины b прямоугольного параллелепипеда равно площади S его основания: S = ab (рис. 177 ). Обозначим высоту прямоугольного параллелепипеда буквой h. Тогда объем V прямоугольного параллелепипеда равен V = abh .

V = abh = (ab)h = Sh .

Итак, мы получили еще одну формулу для вычисления объема прямоугольного параллелепипеда:

V = Sh

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Пример. Какой должна быть высота бака, имеющего форму прямоугольного параллелепипеда, чтобы его объем составлял 324 дм 3 , а площадь дна − 54 дм 2 ?

Решение. Из формулы V = Sh следует, что h = V: S. Тогда искомую высоту h бака можно вычислить так:

h = 324 : 54 = 6 (дм).

Ответ: 6 дм.

>> Урок 31. Формула объёма прямоугольного параллелепипеда

Прямоугольный параллелепипед - это пространственная фигура, ограниченная прямоугольниками .

Форму параллелепипеда имеют многие предметы из окружающей обстановки: коробка, кубики, телевизор, шкаф и т. д..

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Введение:

Как вы ду-ма-е-те, что тя-же-лее: 1 кг пуха или 1 кг гвоз-дей? А что за-ни-ма-ет боль-ше места? Вот об этом мы се-год-ня будем го-во-рить. Будем раз-би-рать-ся, в чем же раз-ни-ца между объ-е-мом и мас-сой.

Определение объема

Объем - это то, сколь-ко места в про-стран-стве за-ни-ма-ет объ-ект, а масса - это то, сколь-ко он весит. Вот литр - это объем или масса? И как он свя-зан с ки-ло-грам-мом? В ма-га-зине мо-ло-ко про-да-ет-ся в лит-ро-вых бу-тыл-ках, вода про-да-ет-ся 1,5-2-лит-ро-вых бу-тыл-ках, сме-та-на про-да-ет-ся в бан-ках по 250 грамм. А что такое 0,33 л?

Измерение объема

Итак, да-вай-те возь-мем весы, бу-тыл-ку и на-льем в нее 600 грамм масла. Потом возь-мем дру-гую такую же бу-тыл-ку и на-льем в нее 600 грамм воды. А те-перь мы возь-мем тесто для блин-чи-ков и на-льем в такую же бу-тыл-ку 600 грамм. По-смот-ри-те, мы везде на-ли-ва-ли 600 грамм - одну и ту же массу, а уро-вень жид-ко-стей по-лу-чил-ся раз-ный, но масса не из-ме-ни-лась (см. рис. 1).

Рис. 1. Срав-не-ние уров-ней жид-ко-стей: масла, воды и теста для блин-чи-ков

Что же ме-ня-лось? Ме-ня-лось ко-ли-че-ство за-ни-ма-е-мо-го места. Как раз это - ко-ли-че-ство за-ни-ма-е-мо-го места - на-зы-ва-ют объ-е-мом. Масса у нас везде была одна и та же, а объем по-лу-чил-ся раз-ный.

Так что же такое, спро-си-те вы, литр? Возь-мем колбу и на-льем в нее 1 кг воды. Так вот, 1 кг воды, то есть то место, ко-то-рое за-ни-ма-ет 1 кг воды, до-го-во-ри-лись на-зы-вать лит-ром.

Да-вай-те еще раз сфор-му-ли-ру-ем. Объем - это число, по-ка-зы-ва-ю-щее, сколь-ко места в про-стран-стве за-ни-ма-ет объ-ект. А чем же, кроме лит-ров, ме-ря-ют объ-ект? Так же, как и у длины, и у пло-ща-ди су-ще-ству-ет много раз-ных спе-ци-аль-ных ве-ли-чин из-ме-ре-ния. На-при-мер, бар-рель. Бар-рель - это ко-ли-че-ство нефти, ко-то-рое по-ме-ща-ет-ся в бочку, опре-де-лен-но-го раз-ме-ра (см. рис. 2).

Рис. 2. Бар-рель

Или есть такая ве-ли-чи-на как гал-лон. Гал-лон - это ве-ли-чи-на, ко-то-рой поль-зу-ют-ся для из-ме-ре-ния в Ан-глии и в Аме-ри-ке. Но обыч-но объ-е-мы ме-ря-ют ку-би-че-ски-ми де-ци-мет-ра-ми, ку-би-че-ски-ми сан-ти-мет-ра-ми, ку-би-че-ски-ми мет-ра-ми. А как же со-от-но-сит-ся литр с ку-би-че-ским де-ци-мет-ром или мет-ром? На самом деле литр - это один ку-би-че-ский де-ци-метр (см. рис. 3).

Рис. 3. Литр - ку-би-че-ский де-ци-метр

То есть внутрь этого ку-би-ка по-ме-ща-ет-ся ровно 1 кг воды. Дело не в том, какой формы ко-роб-ка, а сколь-ко туда по-ме-ща-ет-ся. Да-вай-те по-про-бу-ем в ку-би-че-ский де-ци-метр на-сы-пать муки. Или можно пе-ре-сы-пать муку в пакет - и все равно по-лу-чит-ся 1 литр (или 1 ку-би-че-ский де-ци-метр). То, что там внут-ри, будет литр или ку-би-че-ский де-ци-метр, по-то-му что не важно, какой формы, - важно, сколь-ко за-ни-ма-ет места.

Объем прямоугольного параллелепипеда

Очень по-хо-же об-сто-ят дела с объ-е-мом пря-мо-уголь-но-го па-рал-ле-ле-пи-пе-да.

Объем куба со сто-ро-ной 1 еди-ни-ца - это 1 ку-би-че-ская еди-ни-ца. Опять же, ис-ход-ные ли-ней-ные ве-ли-чи-ны могут быть лю-бы-ми: мил-ли-мет-ры, сан-ти-мет-ры, дюймы.

На-при-мер, 1 см3 - это объем куба со сто-ро-ной 1 см, а 1 км3 - это объем куба со сто-ро-ной 1 км.

Най-дем объем пря-мо-уголь-но-го па-рал-ле-ле-пи-пе-да со сто-ро-на-ми 7 см, 5 см, 4 см. (Рис. 7.)

Рис. 7. Пря-мо-уголь-ный па-рал-ле-ле-пи-пед

Ре-ше-ние

Объем на-ше-го пря-мо-уголь-но-го па-рал-ле-ле-пи-пе-да - это ко-ли-че-ство еди-нич-ных кубов, по-ме-ща-ю-щих-ся в него.

Уло-жим на дно ряд еди-нич-ных ку-би-ков со сто-ро-ной 1 см вдоль длин-ной сто-ро-ны. По-ме-сти-лось 7 штук. Уже по опыту ра-бо-ты с пря-мо-уголь-ни-ком мы знаем, что на дно по-ме-стит-ся всего 5 таких рядов, по 7 штук в каж-дом. То есть всего:

На-зо-вем это слой. Сколь-ко таких слоев мы можем уло-жить друг на друга?

Это за-ви-сит от вы-со-ты. Она равна 4 см. Зна-чит, укла-ды-ва-ет-ся 4 слоя в каж-дом по 35 штук. Всего:

А от-ку-да у нас по-яви-лось число 35? Это 75. То есть ко-ли-че-ство ку-би-ков мы по-лу-чи-ли пе-ре-мно-же-ни-ем длин всех трех сто-рон.

Но это и есть объем на-ше-го пря-мо-уголь-но-го па-рал-ле-ле-пи-пе-да.

Ответ: 140

Те-перь мы можем за-пи-сать фор-му-лу и в общем виде. (Рис. 8.)

Рис. 8. Объем па-рал-ле-ле-пи-пе-да

Объем пря-мо-уголь-но-го па-рал-ле-ле-пи-пе-да со сто-ро-на-ми , , равен про-из-ве-де-нию всех трех сто-рон.

Если длины сто-рон даны в сан-ти-мет-рах, то объем по-лу-чит-ся в ку-би-че-ских сан-ти-мет-рах (см3).

Если в мет-рах, то объем в ку-би-че-ских мет-рах (м3).

Ана-ло-гич-но объем может быть из-ме-рен в ку-би-че-ских мил-ли-мет-рах, ки-ло-мет-рах и т. д.

Задача 1

Стек-лян-ный куб со сто-ро-ной 1 м на-пол-нен водой це-ли-ком. Ка-ко-ва масса воды? (Рис. 9.)

Рис. 9. Куб

Ре-ше-ние

Куб яв-ля-ет-ся еди-нич-ным. Сто-ро-на - 1 м. Объем - 1 м3.

Если мы знаем, сколь-ко весит 1 ку-би-че-ский метр воды (со-кра-щен-но го-во-рят ку-бо-метр), то за-да-ча ре-ше-на.

Но если мы этого не знаем, то нетруд-но по-счи-тать.

Длина сто-ро-ны .

По-счи-та-ем объем в дм3.

Но 1 дм3 имеет от-дель-ное на-зва-ние, 1 литр. То есть у нас 1000 лит-ров воды.

Нам всем из-вест-но, что масса од-но-го литра воды равна 1 кг. То есть у нас 1000 кг воды, или 1 тонна.

По-нят-но, что такой куб, на-пол-нен-ный водой, не под силу пе-ре-дви-нуть ни од-но-му обыч-но-му че-ло-ве-ку.

Ответ: 1 т.

Задача 2

Рис. 10. Хо-ло-диль-ник

Хо-ло-диль-ник имеет вы-со-ту 2 метра, ши-ри-ну 60 см и глу-би-ну 50 см. Найти его объем.

Ре-ше-ние

Пре-жде чем мы вос-поль-зу-ем-ся фор-му-лой объ-е-ма - про-из-ве-де-ние длин всех сто-рон - необ-хо-ди-мо пе-ре-ве-сти длины в оди-на-ко-вые еди-ни-цы из-ме-ре-ния.

Мы можем пе-ре-ве-сти все в метры или все в сан-ти-мет-ры.

Со-от-вет-ствен-но, и объем мы по-лу-чим или в ку-би-че-ских мет-рах, или ку-би-че-ских сан-ти-мет-рах.

Сде-ла-ем и так, и так.

Ответ: или

Думаю, вы со-гла-си-тесь, что в ку-би-че-ских мет-рах объем более по-ня-тен.

Че-ло-век на глаз плохо от-ли-ча-ет число с пятью ну-ля-ми от числа с ше-стью ну-ля-ми, а ведь одно в 10 раз боль-ше, чем дру-гое.

Перевод единиц объема

Часто нам нужно пе-ре-ве-сти одну еди-ни-цу объ-е-ма в дру-гую. На-при-мер, ку-бо-мет-ры в ку-би-че-ские де-ци-мет-ры. Тя-же-ло за-пом-нить все эти со-от-но-ше-ния. Но этого и не нужно де-лать. До-ста-точ-но по-нять общий прин-цип.

На-при-мер, сколь-ко ку-би-че-ских сан-ти-мет-ров в ку-би-че-ском метре?

Да-вай-те по-смот-рим, сколь-ко ку-би-ков со сто-ро-ной 1 сан-ти-метр по-ме-стит-ся в куб со сто-ро-ной 1 м. (Рис. 11.)

Рис. 11. Куб

В один ряд укла-ды-ва-ет-ся 100 штук (ведь в одном метре 100 см).

В один слой укла-ды-ва-ет-ся 100 рядов или ку-би-ков.

Всего по-ме-ща-ет-ся 100 слоев.

Таким об-ра-зом,

То есть если ли-ней-ные ве-ли-чи-ны свя-за-ны со-от-но-ше-ни-ем «в одном метре 100 см», то чтобы по-лу-чить со-от-но-ше-ние для ку-би-че-ских ве-ли-чин, нужно воз-ве-сти 100 в 3 сте-пень (). И не нужно каж-дый раз чер-тить кубы.