Использование уф излучения. Ультрафиолетовое излучение: применение, польза и вред

ультрафиолетовое излучение

Открытие инфракрасного излучения побудило немецкого физика Иоганна Вильгельма Риттера начать изучение противоположного конца спектра, прилегающего к его фиолетовой области. Очень скоро обнаружилось, что там располагается излучение с весьма сильной химической активностью. Новое излучение получило название ультрафиолетовых лучей.

Что же такое ультрафиолетовое излучение? И каково его влияние на земные процессы и действие на живые организмы?

Отличие ультрафиолетового излучения от инфракрасного

Ультрафиолетовое излучение, как и инфракрасное, представляет собой электромагнитные волны. Именно эти излучения ограничивают спектр видимого света с двух сторон. Оба вида лучей не воспринимаются органами зрения. Имеющиеся отличия в их свойствах вызвано разницей в длине волны.

Диапазон ультрафиолетового излучения, располагающегося между видимым и рентгеновским излучением, - достаточно широк: от 10 до 380 микрометра (мкм).

Основное свойство инфракрасного излучения - это его тепловое действие, тогда как важнейшей особенностью ультрафиолета является его химическая активность. Именно благодаря этой особенности ультрафиолетовое излучение оказывает огромное влияние на организм человека.

Влияние ультрафиолетового излучения на человека

Биологический эффект, оказываемый различными длинами ультрафиолетовых волн, имеет существенные различия. Поэтому биологи разделили весь УФ диапазон на 3 участка:

  • УФ-A лучи, это ближний ультрафиолет;
  • УФ-B - средний;
  • УФ-C - дальний.

Окутывающая нашу планету атмосфера, является своеобразным щитом, защищающим Землю от мощного потока ультрафиолетового излучения, идущего от Солнца.

Причём УФ-C лучи поглощаются озоном, кислородом, водяным паром и углекислым газом почти на 90%. Поэтому поверхности Земли в основном достигает радиация, содержащая УФ-A и небольшую долю УФ-В.

Наиболее агрессивным является коротковолновое излучение. Биологическое действие коротковолнового УФ-излучения при попадании на живые ткани могло бы оказывать достаточно разрушительное влияние. Но к счастью, озоновый щит планеты уберегает нас от его воздействия. Однако, не следует забывать, что источниками лучей именно этого диапазона являются ультрафиолетовые лампы и сварочные аппараты.

Биологическое действие длинноволнового УФ-излучения заключается преимущественно в эритемном (вызывающим покраснение кожи) и загарном действии. Эти лучи достаточно мягко воздействуют на кожу и ткани. Хотя существует индивидуальная зависимость кожи от воздействия УФ.

Также при воздействии интенсивного ультрафиолета могут пострадать глаза.

О влиянии ультрафиолетового излучения на человека знают все. Но в основном - это поверхностные сведения. Попробуем детальнее осветить эту тему.

Как влияет ультрафиолет на кожу (ультрафиолетовый мутагенез)

Хроническое солнечное голодание ведёт ко многим негативным последствиям. Точно так же, как и другая крайность - желание приобрести «красивый, шоколадный цвет тела» за счёт длительного пребывания под палящими солнечными лучами. Как и почему влияет ультрафиолет на кожу? Чем грозит неконтролируемое пребывание на солнце?

Естественно, что покраснение кожи, далеко не всегда приводит к шоколадному загару. Потемнение кожи происходит как результат выработки организмом красящего пигмента - меланина, как свидетельство борьбы нашего организма с травмирующим действием УФ части солнечного излучения. При этом, если покраснение - это временное состояние кожи, то потеря её эластичности, разрастание клеток эпителия в виде веснушек и пигментных пятен - это стойкий косметический дефект. Ультрафиолет, глубоко проникая в кожные покровы, может стать причиной ультрафиолетового мутагенеза, то есть повреждения клеток кожи на генном уровне. Самым грозным его осложнением является меланома - опухоль кожи. Метастазирование меланомы может привести к летальному исходу.

Защита кожи от УФ-излучения

Существует ли защита кожи от УФ-излучения? Чтобы защитить кожу от солнца, особенно на пляже, достаточно придерживаться нескольких правил.

Для защиты кожи от ультрафиолетового излучения необходимо использовать и специально подобранную одежду.

Как влияет ультрафиолет на глаза (электроофтальмия)

Ещё одним проявлением негативного воздействия ультрафиолетового излучения на организм человека является электроофтальмия, то есть повреждение структур глаза под воздействием интенсивного ультрафиолета.

Поражающим фактором при этом процессе является средневолновой диапазон ультрафиолетовых волн.

Часто это происходит при следующих условиях:

  • во время наблюдения за солнечными процессами без специальных приспособлений;
  • при яркой, солнечной погоде на море;
  • во время пребывания в горном, заснеженном районе;
  • при кварцевании помещений.

При электроофтальмии имеет место ожёг роговицы. Симптомами такого поражения являются:

  • усиленное слезотечение;
  • резь;
  • светобоязнь;
  • покраснение;
  • отёк эпителия роговицы и век.

К счастью, обычно глубокие слои роговицы не поражаются, и после заживления эпителия зрение восстанавливается.

Первая помощь при электроофтальмии

Описанные выше симптомы могут доставить человеку не только дискомфорт, но и настоящие страдания. Как оказать первую помощь при электроофтальмии?

Помогут следующие действия:

Компрессы из влажных пакетиков чёрного чая и сырого, тёртого картофеля отлично снимают резь в глазах.

Если помощь не возымела действия, обратитесь к врачу. Он назначит терапию, направленную на восстановление роговицы.

Всех этих неприятностей можно было бы избежать, используя солнцезащитные очки со специальной маркировкой - UV 400, которые полностью защитят глаза от всех видов ультрафиолетовых волн.

Применение ультрафиолетового излучения в медицине

В медицине существует термин «ультрафиолетовое голодание». Это состояние организма возникает при отсутствии или недостаточном воздействии солнечного света на организм человека.

Чтобы избежать возникающих при этом патологий, используют искусственные источники УФ-излучения. Их дозированное использование помогает справиться с зимним дефицитом витамина D в организме и повысить иммунитет.

Наряду с этим ультрафиолетовая терапия широко применяется для лечения суставов, дерматологических и аллергических заболеваний.

Ультрафиолетовое облучение также помогает:

  • поднять гемоглобин и понизить уровень сахара;
  • улучшить работу щитовидной железы;
  • восстановить работу дыхательной и эндокринной систем;
  • обеззараживающее действие УФ-лучей широко применяется для дезинфекции помещений и хирургических инструментов;
  • весьма полезны его бактерицидные свойства для лечения больных с тяжёлыми, гнойными ранами.

Как и при любом серьёзном воздействии на человеческий организм необходимо учитывать не только пользу, но и возможный вред от ультрафиолетового излучения.

Противопоказаниями для ультрафиолетовой терапии являются острые воспалительные и онкологические заболевания, кровотечения, II и III стадия гипертонической болезни, активная форма туберкулёза.

Каждое научное открытие несёт для человечества как потенциальные опасности, так и огромные перспективы его использования. Познание последствий воздействия ультрафиолета на человеческий организм, позволило не только минимизировать его негативное влияние, но и в полной мере применить ультрафиолетовое излучение в медицине и других сферах жизни.

Благоприятные воздействия УФ лучей на организм

Лучи солнца обеспечивают тепло и свет, которые улучшают общее самочувствие и стимулируют кровообращение. Небольшое количество ультрафиолета необходимо организму для выработки витамина D. Витамин D играет важную роль в усвоении кальция и фосфора из пищи, а также в развитии скелета, функционировании иммунной системы и в формировании клеток крови. Без сомнения, небольшое количество солнечного света полезно для нас. Воздействия солнечного света в течение 5 - 15 минут на кожу рук, лица и кистей два - три раза в неделю в течение летних месяцев достаточно для поддержания нормального уровня витамина D. Ближе к экватору, где UV излучение интенсивнее, достаточно еще более короткого промежутка.

Следовательно, для большинства людей дефицит витамина D маловероятен. Возможные исключения – это те, кто значительно ограничил свое пребывание на солнце: не покидающие своего дома престарелые люди или люди с сильно пигментированной кожей, которые проживают в странах с низким уровнем UV излучения. Витамин D естественного происхождения очень редок в нашей пище, он присутствует главным образом в рыбьем жире и масле из печени трески.

Ультрафиолетовое излучение успешно используется при лечении множества заболеваний, включая рахит, псориаз, экзему и др. Это терапевтическое воздействие не исключает отрицательные побочные эффекты UV излучения, но оно проводится под медицинским наблюдением, чтобы гарантировать, что польза превышает риск.

Несмотря на значительную роль в медицине, негативные эффекты UV излучения обычно значительно перевешивают положительные. В дополнение к хорошо известным непосредственным эффектам избытка ультрафиолетового облучения, таким как ожоги или аллергические реакции, долгосрочные эффекты представляют опасность здоровью на протяжении всей жизни. Чрезмерный загар способствует поражению кожи, глаз и, вероятно, иммунной системы. Многие люди забывают о том, что UV радиация накапливается в течение всей жизни. Ваше отношение к загару сейчас определяет возможность развития у вас рака кожи или катаракты в дальнейшей жизни! Риск развития рака кожи напрямую связан с продолжительностью и частотой загара.

Воздействие у льтрафиолета на кожу

Здорового загара не существует! Клетки кожи производят пигмент темного цвета только с целью защиты от последующего излучения. Загар обеспечивает некоторую защиту против ультрафиолета. Темный загар на белой коже эквивалентен фактору защиты SPF между 2 и 4. Однако, это не является защитой от отдаленных последствий, таких как рак кожи. Загар может быть привлекательным в косметическом плане, но фактически это означает только то, что ваша кожа была повреждена и попыталась защитить себя.

Есть два различных механизма образования загара: быстрый загар, когда под воздействием ультрафиолета темнеет уже существующий в клетках пигмент. Этот загар начинает исчезать через несколько часов после прекращения воздействия. Долговременный загар возникает в течение приблизительно трех дней, когда новый меланин будет произведен и распределен между клетками кожи. Этот загар может сохраняться в течение нескольких недель.

Солнечный ожог- Высокие дозы ультрафиолета губительны для большинства клеток эпидермиса, а уцелевшие клетки оказываются повреждены. В лучшем случае солнечный ожог вызывает покраснение кожи, называемое эритемой. Она появляется вскоре после инсоляции и достигает максимальной интенсивности между 8 и 24 часами. В этом случае последствия исчезают в течение нескольких дней. Однако сильный загар может оставлять на коже болезненные пузыри и пятна белого цвета, новая кожа на месте которых лишена защиты и более чувствительна к повреждению ультрафиолетом.

Фотосенсибилизация - Небольшой процент населения обладают особенностью очень остро реагировать на ультрафиолетовое излучение. Даже минимальной дозы ультрафиолетового излучения достаточно для запуска у них аллергических реакций, приводящих к быстрому и сильному солнечному ожогу. Фотосенсибилизация часто связывается с использованием некоторых медикаментов, включая некоторые нестероидные противовоспалительные препараты, болеутоляющие средства, транквилизаторы, пероральные противодиабетические средства, антибиотики и антидепрессанты. Если вы постоянно принимаете какие-либо препараты, внимательно ознакомьтесь с аннотацией или проконсультируйтесь с вашим лечащим врачом о возможных реакциях фотосенсибилизации. Некоторые пищевые и косметические продукты, такие как парфюмерия или мыла могут также содержать увеличивающие чувствительность к ультрафиолету компоненты.

Фотостарение- Воздействие солнца способствует старению вашей кожи путем сочетания нескольких факторов. UVB стимулирует быстрое увеличение количества клеток в верхнем слое кожи. Поскольку все больше клеток произведено, эпидермис утолщается.

UVA, проникающий в более глубокие слои кожи, повреждает структуры соединительной ткани и кожа постепенно теряет эластичность. Морщины, дряблость кожи - часто встречающийся результат этой потери. Явление, которое мы часто можем заметить у пожилых людей - локальное избыточное производство меланина, приводящее к темным участкам или печеночным пятнам. Кроме того, лучи солнца высушивают вашу кожу, делая ее шершавой и грубой.

Немеланомные раковые заболевания кожи- В отличие от меланомы, базальноклеточная и чешуйчатая карцинома обычно не приводят к летальному исходу, но их хирургическое удаление может быть болезненным и привести к образованию рубцов.

Немеланомные раковые образования чаще всего располагаются на открытых солнцу частях тела, таких как уши, лицо, шея и предплечья. Обнаружено, что они более часто встречаются у рабочих, работающих вне помещений, чем у находящихся внутри помещений. Это дает основание полагать, что длительное накопление воздействия UV играет главную роль в развитии немеланомных раковых образований кожи.

Меланома- Злокачественная меланома - самый редкий, но и наиболее опасный тип рака кожи. Это одно из наиболее часто встречающихся раковых образований у людей в возрасте 20-35 лет, особенно в Австралии и Новой Зеландии. Все формы рака кожи имеют тенденцию к увеличению за прошлые двадцать лет, однако, самая высокая во всем мире остается за меланомой.

Меланома может возникнуть под видом новой родинки или как изменения цвета, формы, размера или изменения ощущений в уже существующих пятнах, веснушках или родинках. Меланомы обычно имеют неровный контур и неоднородную окраску. Зуд – еще один частый признак, но он также может встречаться при нормальных родинках. Если заболевание распознано и лечение проведено своевременно, прогноз для жизни благоприятный. При отсутствии лечения опухоль может быстро разрастаться и раковые клетки могут распространиться к другим частям тела.

Воздействие ультрафиолетового излучения на глаза

Глаза занимают менее 2 процентов от поверхности тела, однако представляют собой единственную систему органов, допускающую возможность проникновения видимого света вглубь организма. В течение эволюции множество механизмов развилось, чтобы защитить этот очень чувствительный орган от вредных воздействий солнечных лучей:

Глаз расположен в анатомических углублениях головы, защищен бровными дугами, бровями и ресницами. Однако эта анатомическая адаптация лишь частично защищает от ультрафиолетовых лучей в чрезвычайных условиях, таких как использование солярия или при сильном отражения света от снега, воды и песка.

Сужение зрачка, закрытие век и прищуривание минимизирует проникновение лучей солнца в глаз.

Однако эти механизмы активизированы ярким видимым светом, а не ультрафиолетовыми лучами, но в облачный день ультрафиолетовое излучение также может быть высоким. Поэтому, эффективность этих естественных механизмов защиты против воздействия ультрафиолета ограничена.

Фотокератит и фотоконъюнктивит- Фотокератит - воспаление роговой оболочки, в то время как фотоконъюнктивит относится к воспалению конъюнктивы, мембраны, которая ограничивает сферу глаза и покрывает внутреннюю поверхность век. Воспалительные реакции глазного яблока и век могут быть наравне с солнечным ожогом кожи очень чувствительны и обычно появляются в течение нескольких часов после воздействия. Фотокератит и фотоконъюнктивит могут быть очень болезненными, однако, они обратимы и, по всей видимости, не приводят к продолжительному повреждению глаз или нарушению зрения.

Крайняя форма фотокератита – «снежная слепота». Это иногда происходит у лыжников и альпинистов, которые испытывают воздействие очень высоких доз ультрафиолетовых лучей из-за высотных условий и очень сильного отражения. Свежий снег может отражать до 80 процентов ультрафиолетовых лучей. Эти сверхвысокие дозы ультрафиолета действуют губительно на клетки глаза и могут привести к слепоте. «Снежная слепота» очень болезненна. Чаще всего новые клетки растут быстро и зрение восстанавливается в течение нескольких дней. В отдельных случаях солнечная слепота может привести к осложнениям, таким как хроническое раздражение или слезотечение.

Птеригиум - Это разрастание конъюнктивы на поверхности глаза – часто встречающийся косметический недостаток, предположительно связанный с длительным воздействием ультрафиолета. Птеригиум может распространяться к центру роговой оболочки и таким образом уменьшать зрение. Данное явление также может воспаляться. Несмотря на то, что заболевание может быть устранено хирургическим путем, оно имеет тенденциюрецидивировать.

Катаракта- ведущая причина слепоты в мире. Белки хрусталика накапливают пигменты, которые покрывают линзу и в конечном итоге приводят к слепоте. Несмотря на то, что с возрастом катаракта появляется в различной степени у большинства людей, судя по всему, вероятность ее возникновения возрастает под воздействием ультрафиолета.

Раковые поражения глаз- По последним научным данным полагают, что различные формы рака глаза могут быть связаны воздействием ультрафиолетового излучения в течение жизни.

Меланома – частое раковое поражение глаз и иногда требующее хирургического удаления. Базальноклеточная карцинома наиболее часто располагается в области век.

Влияние УФ излучения на иммунную систему

Воздействие солнечного света может предшествовать герпетическим высыпаниям. По всей вероятности радиация UVB уменьшает эффективность иммунной системы и она больше не может держать под контролем вирус простого герпеса. В результате происходит высвобождение инфекции. В одном исследовании, проведенном в Соединенных Штатах, изучался эффект влияния солнцезащитного крема на выраженность высыпаний герпеса. Из 38 пациентов страдающих инфекцией простого герпеса у 27 развились высыпания после воздействия UV излучения. При использовании солнцезащитного крема напротив, ни у одного из пациентов высыпаний не возникло. Поэтому, кроме защиты от солнца, солнцезащитный крем может быть эффективным в предотвращении рецидива высыпаний герпеса, вызванных солнечным светом.

Исследования последних лет все больше доказывают, что воздействие ультрафиолетового излучения внешней среды может изменить активность и распределение некоторых клеток, ответственных за иммунный ответ в организме человека. Как следствие избыток UV излучения может увеличить риск инфекции или уменьшать способность организма обороняться против рака кожи. Там, где уровень ультрафиолетового излучения высок, (главным образом в развивающихся странах) это может снизить эффективность прививок.

Также высказаны предположения о том, что ультрафиолетовое излучение способно вызвать рак двумя разными способами: путем непосредственного повреждения ДНК и ослабляя иммунную систему. До настоящего времени было проведено не так много исследований, чтобы описать потенциальное влияние иммуномодуляции на развитие рака.

Наибольшей биологической активностью обладают ультрафиолетовые лучи. В естественных условиях мощным источником ультрафиолетовых лучей является солнце. Однако лишь длинноволновая его часть достигает земной поверхности. Более коротковолновая радиация поглощается атмосферой уже на высоте 30-50 км от поверхности земли.

Наибольшая интенсивность потока ультрафиолетовой радиации наблюдается незадолго до полудня с максимумом в весенние месяцы.

Как уже указывалось, ультрафиолетовые лучи обладают значительной фотохимической активностью, что широко используется в практике. Ультрафиолетовое облучение применяется при синтезе ряда веществ, отбеливании тканей, изготовлении лакированной кожи, светокопировании чертежей, получении витамина D и других производственных процессах.

Важным свойством ультрафиолетовых лучей является их способность вызывать люминесценцию.

При некоторых процессах имеет место воздействие на работающих ультрафиолетовых лучей, например электросварка вольтовой дугой, автогенная резка и сварка, производство радиоламп и ртутных выпрямителей, литье и плавка металлов и некоторых минералов, светокопировка, стерилизация воды и т. д. Этому же воздействию подвергаются медицинский и технический персонал, обслуживающий ртутно-кварцевые лампы.

Ультрафиолетовые лучи обладают способностью изменять химическую структуру тканей и клеток.

Длина волны ультрафиолетового излучения

Биологическая активность ультрафиолетовых лучей различной длины волны неодинакова. Ультрафиолетовые лучи с длиной волны от 400 до 315 mμ . оказывают относительно слабое биологическое действие. Лучи с меньшей длиной волны отличаются большей биологической активностью. Ультрафиолетовые лучи длиной 315-280 mμ оказывают сильное кожное и антирахитическое действие. Особенно большой активностью обладает излучение с длиной волн 280-200 mμ . (бактерицидное действие, способность активно воздействовать на тканевые белки и липоиды, а также вызывать гемолиз).

В производственных условиях имеет место воздействие ультрафиолетовых лучей с длиной волны от 36 до 220 mμ ., т. е. обладающих значительной биологической активностью.

В отличие от тепловых лучей, основным свойством которых является развитие гиперемии в участках, подвергшихся облучению, действие на организм ультрафиолетовых лучей представляется значительно более сложным.

Ультрафиолетовые лучи относительно мало проникают через кожу и их биологическое действие связано с развитием многих нейрогуморальных процессов, обусловливающих сложный характер влияния их на организм.

Ультрафиолетовая эритема

В зависимости от интенсивности источника света и содержания в его спектре инфракрасных или ультрафиолетовых лучей изменения со стороны кожи будут неодинаковыми.

Воздействие ультрафиолетовых лучей на кожу вызывает характерную реакцию со стороны сосудов кожи - ультрафиолетовую эритему. Ультрафиолетовая эритема существенно отличается от тепловой эритемы, вызванной инфракрасным облучением.

Обычно при применении инфракрасных лучей выраженных изменений со стороны кожи не наблюдается, так как возникающее чувство жжения и боль препятствуют длительному воздействию этих лучей. Эритема, развивающаяся в результате действия инфракрасных лучей, возникает непосредственно после облучения, является нестойкой, держится недолго (30-60 минут) и носит главным образом гнездный характер. После длительного воздействия инфракрасных лучей появляется бурая пигментация пятнистого вида.

Ультрафиолетовая эритема появляется после облучения вслед за некоторым латентным периодом. Этот период колеблется у разных людей от 2 до 10 часов. Продолжительность латентного периода ультрафиолетовой эритемы находится в известной зависимости от длины волны: эритема от длинноволновых ультрафиолетовых лучей появляется позднее и держится дольше, чем от коротковолновых.

Эритема, вызванная ультрафиолетовыми лучами, имеет ярко-красную окраску с резкими границами, точно соответствующими участку облучения. Кожа становится несколько отечной и болезненной. Наибольшего развития эритема достигает через 6-12 часов после появления, держится в течение 3-5 дней и постепенно бледнеет, приобретая коричневый оттенок, причем происходит равномерное и интенсивное потемнение кожи вследствие образования в ней пигмента. В некоторых случаях в период исчезновения эритемы наблюдается небольшое шелушение.

Степень развития эритемы зависит от величины дозы ультрафиолетовых лучей и индивидуальной чувствительности. При прочих равных условиях, чем больше доза ультрафиолетовых лучей, тем интенсивнее воспалительная реакция кожи. Наиболее выраженная эритема вызывается лучами с длинами волн около 290 mμ . При передозировке ультрафиолетового облучения эритема приобретает синюшный оттенок, края эритемы становятся расплывчатыми, облученный участок отечен и болезнен. Интенсивное облучение может вызвать ожог с развитием пузыря.

Чувствительность различных участков кожи к ультрафиолету

Кожные покровы живота, поясницы, боковых поверхностей грудной клетки обладают наибольшей чувствительностью к ультрафиолетовым лучам. Наименее чувствительна кожа кистей рук и лица.

Лица с нежной, слабопигментированной кожей, дети, а также страдающие базедовой болезнью и вегетативной дистонией обладают большей чувствительностью. Повышенная чувствительность кожи к ультрафиолетовым лучам наблюдается весной.

Установлено, что чувствительность кожи к ультрафиолетовым лучам может изменяться в зависимости от физиологического состояния организма. Развитие эритемной реакции зависит в первую очередь от функционального состояния нервной системы.

В ответ на ультрафиолетовое облучение в коже образуется и откладывается пигмент, являющийся продуктом белкового обмена кожи (органическое красящее вещество - меланин).

Длинноволновые ультрафиолетовые лучи вызывают более интенсивный загар, чем коротковолновые. При повторном ультрафиолетовом облучении кожа становится менее восприимчивой к этим лучам. Пигментация кожи развивается нередко и без предварительно видимой эритемы. В пигментированной коже ультрафиолетовые лучи не вызывают фотоэритемы.

Положительное влияние ультрафиолета

Ультрафиолетовые лучи понижают возбудимость чувствительных нервов (болеутоляющее действие) и оказывают также антиспастическое и антирахитическое действие. Под влиянием ультрафиолетовых лучей происходит образование очень важного для фосфорно-кальциевого обмена витамина D (находящийся в коже эргостерин превращается в витамин D). Под воздействием ультрафиолетовых лучей усиливаются окислительные процессы в организме, увеличивается поглощение тканями кислорода и выделение углекислоты, активируются ферменты, улучшается белковый и углеводный обмен. Повышается содержание кальция и фосфатов в крови. Улучшаются кроветворение, регенеративные процессы, кровоснабжение и трофика тканей. Расширяются сосуды кожи, снижается кровяное давление, повышается общий биотонус организма.

Благоприятное действие ультрафиолетовых лучей выражается в изменении иммунобиологической реактивности организма. Облучение стимулирует выработку антител, повышает фагоцитоз, тонизирует ретикулоэндотелиальную систему. Благодаря этому повышается сопротивляемость организма к инфекциям. Важное значение в этом отношении имеет дозировка облучения.

Ряд веществ животного и растительного происхождения (гематопорфирин, хлорофилл и т. д.), некоторые химические препараты (хинин, стрептоцид, сульфидин и т. д.), особенно флуоресцирующие краски (эозин, метиленовая синька и т. д.), обладают свойством повышать чувствительность организма к свету. В промышленности у лиц, работающих с каменноугольной смолой, отмечаются заболевания кожи открытых частей тела (зуд, жжение, краснота), причем эти явления исчезают по ночам. Это связано с фотосенсибилизирующими свойствами содержащегося в каменноугольной смоле акридина. Сенсибилизация имеет место преимущественно в отношении видимых лучей и в меньшей степени в отношении ультрафиолетовых лучей.

Большое практическое значение имеет способность ультрафиолетовых лучей убивать различные бактерии (так называемое бактерицидное действие). Это действие особенно интенсивно выражено у ультрафиолетовых лучей с длинами волн менее (265 - 200 mμ). Бактерицидное действие света связано с влиянием на протоплазму бактерий. Доказано, что после ультрафиолетового облучения митогенетическое излучение в клетках и крови повышается.

По современным представлениям, в основе действия света на организм лежит главным образом рефлекторный механизм, хотя большое значение придается и гуморальным факторам. Особенно это относится к действию ультрафиолетовых лучей. Нужно также иметь в виду возможность действия видимых лучей через органы зрения на кору и вегетативные центры.

В развитии эритемы, вызванной светом, существенное значение придается влиянию лучей на рецепторный аппарат кожи. При воздействии ультрафиолетовых лучей в результате распада белков в коже образуются гистамин и гистаминоподобные продукты, которые расширяют кожные сосуды и повышают их проницаемость, что ведет к гиперемии и отечности. Образующиеся в коже при воздействии ультрафиолетовых лучей продукты (гистамин, витамин D и др.) поступают в кровь и вызывают те общие сдвиги в организме, которые имеют место при облучении.

Таким образом, развивающиеся в облученном участке процессы ведут нейрогуморальным путем к развитию общей реакции организма. Эта реакция определяется главным образом состоянием высших регулирующих отделов центральной нервной системы, которое, как известно, может меняться под влиянием различных факторов.

Нельзя говорить о биологическом действие ультрафиолетового облучения вообще, вне зависимости от длины волны. Коротковолновое ультрафиолетовое излучение вызывает денатурацию белковых веществ, длинноволновое - фотолитический распад. Специфическое действие разных участков спектра ультрафиолетового излучения выявляется главным образом в начальной стадии.

Применение ультрафиолетового излучения

Широкое биологическое действие ультрафиолетовых лучей дает возможность в определенных дозах использовать их для профилактических и лечебных целей.

Для ультрафиолетового облучения пользуются солнечным светом, а также искусственными источниками облучения: ртутно-кварцевыми и аргонортутно-кварцевыми лампами. Спектр излучения ртутно-кварцевых ламп характеризуется наличием более коротких ультрафиолетовых лучей, чем в солнечном спектре.

Ультрафиолетовое облучение может быть общим или местным. Дозировка процедур производится по принципу биодоз.

В настоящее время ультрафиолетовое облучение широко используют, прежде всего, для профилактики различных заболеваний. С этой целью ультрафиолетовое облучение применяют для оздоровления окружающей человека внешней среды и изменения его реактивности (в первую очередь - повышения его иммунобиологических свойств).

С помощью специальных бактерицидных ламп может производиться стерилизация воздуха в лечебных учреждениях и жилых помещениях, стерилизация молока, воды и т. д. широко используется ультрафиолетовое облучение для предупреждения рахита, гриппа, в целях общего укрепления организма в лечебных и детских учреждениях, школах, физкультурных залах, фотариях при угольных шахтах, при тренировке спортсменов, для акклиматизации к условиям севера, при работах в горячих цехах (ультрафиолетовое облучение дает больший эффект в сочетании с воздействием инфракрасной радиации).

Ультрафиолетовые лучи особенно широко используются для облучения детей. В первую очередь такое облучение показано, ослабленным, часто болеющим детям, проживающим в северных и средних широтах. При этом улучшается общее состояние детей, сон, нарастает вес, снижается заболеваемость, уменьшается частота катаральных явлений и, длительность заболеваний. Улучшается общее физическое развитие, нормализуется кровь, проницаемость сосудов.

Значительное распространение получило также ультрафиолетовое облучение горнорабочих в фотариях, которые в большом количестве организованы на предприятиях горнорудной промышленности. При систематическом массовом облучении шахтеров, занятых на подземных работах, отмечается улучшение самочувствия, повышение трудоспособности, уменьшение утомляемости, снижение заболеваемости с временной утратой трудоспособности. После облучения шахтеров повышается процентное содержание гемоглобина, появляется моноцитоз, уменьшается число случаев гриппа, снижается заболеваемость опорно-двигательного аппарата, периферической нервной системы, реже наблюдаются гнойничковые заболевания кожи, катары верхних дыхательных путей и ангины, улучшаются показания жизненной емкости, легких.

Применение ультрафиолетового излучения в медицине

Применение ультрафиолетовых лучей с терапевтической целью базируется в основном на противовоспалительном, антиневралгическом и десенсибилизирующем действии этого вида лучистой энергии.

В комплексе с другими лечебными мероприятиями ультрафиолетовое облучение проводится:

1) при лечении рахита;

2) после перенесенных инфекционных заболеваний;

3) при туберкулезных заболеваниях костей, суставов, лимфатических узлов;

4) при фиброзном туберкулезе легких без явлений, указывающих на активацию процесса;

5) при заболеваниях периферической нервной системы, мышц и суставов;

6) при заболеваниях кожи;

7) при ожогах и отморожениях;

8) при гнойных осложнениях ран;

9) при рассасывании инфильтратов;

10) в целях ускорения регенеративных процессов при травмах костей и мягких тканей.

Противопоказаниями к облучению являются:

1) злокачественные новообразования (так как облучение ускоряет их рост);

2) резкое истощение;

3) повышенная функция щитовидной железы;

4) выраженные сердечно-сосудистые заболевания;

5) активный туберкулез легких;

6) заболевания почек;

7) выраженные изменения центральной нервной системы.

Следует помнить, что получение пигментации, особенно в короткий срок, не должно быть целью лечения. В ряде случаев хороший терапевтический эффект наблюдается и при слабой пигментации.

Негативное действие ультрафиолета

Длительное и интенсивное ультрафиолетовое облучение может оказать неблагоприятное влияние на организм и вызвать патологические изменения. При значительном облучении отмечаются быстрая утомляемость, головные боли, сонливость, ухудшение памяти, раздражительность, сердцебиение, понижение аппетита. Чрезмерное облучение может вызвать гиперкальциемию, гемолиз, задержку роста и понижение сопротивляемости инфекциям. При сильном облучении развиваются ожоги и дерматиты (жжение и зуд кожи, диффузная эритема, отечность). При этом отмечается повышение температуры тела, головная боль, разбитость. Ожоги и дерматиты, возникающие под воздействием солнечной радиации, связаны преимущественно с влиянием ультрафиолетовых лучей. У работающих на открытом воздухе под влиянием солнечной радиации могут возникнуть длительно и тяжело протекающие дерматиты. Необходимо помнить о возможности перехода описываемых дерматитов в рак.

В зависимости от глубины проникновения лучей различных участков солнечного спектра могут развиться изменения глаз. Под влиянием инфракрасных и видимых лучей возникает острый ретинит. Хорошо известна так называемая катаракта стеклодувов, развивающаяся в результате длительного поглощения инфракрасных лучей хрусталиком. Помутнение хрусталика происходит медленно, главным образом у рабочих горячих цехов со стажем работы 20-25 лет и больше. В настоящее время профессиональные катаракты в горячих цехах встречаются редко вследствие значительного улучшения условий труда. Роговица и конъюнктива реагируют главным образом на ультрафиолетовые лучи. Эти лучи (особенно с длиной волны менее 320 mμ .) вызывают в ряде случаев заболевание глаз, известное под названием фотоофтальмии или электроофтальмии. Это заболевание наиболее часто встречается у электросварщиков. В таких случаях часто наблюдается острый кератоконъюнктивит, который обычно возникает через 6-8 часов после работы, нередко ночью.

При электроофтальмии отмечается гиперемия и припухание слизистой, блефароспазм, светобоязнь, слезотечение. Часто обнаруживается поражение роговицы. Продолжительность острого периода болезни 1-2 дня. У работающих на открытом воздухе при ярком солнечном освещении широких покрытых снегом пространств фотоофтальмия протекает иногда в виде так называемой снежной слепоты. Лечение фотоофтальмии заключается в пребывании в темноте, применении новокаина и холодных примочек.

Средства защиты от ультрафиолетового излучения

Для защиты глаз от неблагоприятного действия ультрафиолетовых лучей на производствах пользуются щитками или шлемами со специальными темными стеклами, защитными очками, а для защиты остальных частей тела и окружающих лиц - изолирующими ширмами, переносными экранами, спецодеждой.

С открытием инфракрасного излучения у известного в свое время германского физика Иоганна Вильгельма Риттера возникло желание изучить противоположную сторону данного явления.

Спустя некоторое время ему удалось выяснить, что на другой конец обладает немалой химической активностью.

Такой спектр стали называть ультрафиолетовыми лучами. Что оно собой представляет и какое влияние оказывает на живые земные организмы, попробуем разобраться далее.

Оба излучения – это в любом случае электромагнитные волны. Как инфракрасное, так и ультрафиолетовое, они с обеих сторон ограничивают спектр света, воспринимаемого человеческим глазом.

Главное отличие этих двух явлений – длина волны. Ультрафиолет обладает достаточно широким диапазоном длины волны – от 10 до 380 мкм и располагается он между видимым светом и рентген-излучением.


Отличия инфракрасного излучения от ультрафиолетового

ИК-излучение имеет основное свойство – излучать тепло, в то время, как ультрафиолетовое обладает химической активностью, что оказывает ощутимое воздействие на человеческий организм.

Как ультрафиолетовое излучение влияет на человека?

Благодаря тому, что УФ делятся по разности длины волны, биологически они влияют на человеческий организм по-разному, поэтому ученые выделяют три участка ультрафиолетового диапазона: УФ-А, УФ-Б, УФ-С: ближний, средний и дальний ультрафиолет.

Атмосфера, которая окутывает нашу планету, выступает в роли защитного щита, что защищает ее от Солнечного потока ультрафиолета. Дальнее излучение удерживается и поглощается практически полностью посредством кислорода, водяного пара, углекислого газа. Таким образом, на поверхность попадает незначительная радиация в виде ближнего и среднего излучения.

Самое опасное – излучение с небольшой длиной волны. Если коротковолновое излучение опадает на живые ткани, это провоцирует моментальное разрушительное действие. Но благодаря тому, что у нашей планеты есть озоновый щит, мы находимся в безопасности от воздействия подобных лучей.

ВАЖНО! Несмотря на природную защиту, мы пользуемся в быту некоторыми изобретениями, являющимися источниками именно данного диапазона лучей. Это сварочные аппараты и ультрафиолетовые лампы, от которых, к сожалению, отказаться нельзя.

Биологически ультрафиолет воздействует на человеческую кожу как небольшое покраснение, загар, что является достаточно мягкой реакцией. Но стоит учитывать индивидуальную особенность кожи, которая может специфически отреагировать на УФ излучение.

Воздействие УФ лучей также неблагоприятно влияет на глаза. Многие осведомлены в том, что ультрафиолет так или иначе влияет на человеческий организм, но подробности известны не все, поэтому далее попробуем более детально разобраться в этой теме.

УФ мутагенез или как УФ воздействует на человеческую кожу

Полностью отказываться от попадания солнечных лучей на кожный покров нельзя, это привод к крайне неприятным последствиям.

Но также впадать в крайность и стараться приобрести привлекательный оттенок тела, изнуряя себя под беспощадными лучами солнца – противопоказано. Что может произойти в случае бесконтрольного пребывания под палящим солнцем?

Если обнаружилось покраснение кожи, это не является признаком того, что спустя некоторое время, оно пройдет и останется милый, шоколадный загар. Кожа темнее вследствие того, что организмом вырабатывается красящий пигмент, меланин, который борется с неблагоприятным воздействием УФ на наш организм.

Притом, покраснение на коже остается недолго, а вот эластичность она может утратить навсегда. Также могут начать разрастаться клетки эпителия, визуально отражающиеся в виде веснушек и пигментных пятен, что также останется надолго, а то и навсегда.

Проникая глубока в ткани, ультрафиолет может привести к ультрафиолетовому мутагенезу, что представляет собой повреждение клеток на генном уровне. Наиболее опасным может стать меланома, в случае метастазировании которой может наступить смерть.

Как защититься от ультрафиолетового излучения?

Можно ли защитить кожу от негативного воздействия ультрафиолета? Да, если, будучи на пляже, придерживаться всего нескольких правил:

  1. Находиться под палящим солнцем необходимо недолго и в строго определенные часы, когда приобретенный легкий загар выступит как фотозащита кожи.
  2. Обязательно использовать солнцезащитные крема. Прежде чем купить такого рода средство, обязательно проверьте, способно ли оно защитить вас от УФ-А и УФ-В.
  3. Стоит включить в рацион питания продукты, содержащие максимальное количество витаминов С и Е, а также богатые на антиоксиданты.

Если вы находитесь не на пляже, но вынуждены находится од открытым небом, стоит выбирать специальную одежду, способную защитить кожу от УФ.

Электроофтальмия – негативное влияние УФ-излучения на глаза

Электроофтальмия – явление, возникающие вследствие негативного воздействия ультрафиолета на структуру глаза. УФ волны со средним диапазонов в данном случае являются очень разрушающими для человеческого зрения.


Электроофтальмия

Данные явления чаще всего возникают, когда:

  • Человек наблюдает за солнцем, его местонахождением, не обезопасив глаза специальными приспособлениями;
  • Яркое солнце на открытом пространстве (пляж);
  • Человек находится в заснеженном районе, в горах;
  • В помещении, где находится человек, рассоложены кварцевые лампы.

Электроофтальмия может привести к ожогу роговицы, главными симптомами которого можно назвать:

  • Слезоточивость глаз;
  • Существенные рези;
  • Боязнь яркого света;
  • Покраснение белка;
  • Отёк эпителия роговицы и век.

О статистике глубокие слои роговицы не успевают подвергнуться поражению, поэтому, когда эпителий заживляется, зрение полностью восстанавливается.

Как оказать первую помощь при электроофтальмии?

Если человек столкнулся с вышеперечисленными симптомами, это не только эстетически неприятно, но и может доставить немыслимые страдания.

Оказание первой помощи довольно простое:

  • Сперва промыть глаза чистой водой;
  • Затем применить увлажняющие капли;
  • Надеть очки;

Чтобы избавиться от рези в глазах, достаточно сделать компресс из влажных пакетиков от черного чая, или же натереть сырой картофель. В случае, если эти способы не помогли, стоит сразу же обратиться за помощью к специалисту.

Чтобы избежать подобных ситуаций, достаточно приобрести социальные солнцезащитные очки. Маркировка UV-400 говорит о том, что данный аксессуар способен защитить глаза от всех УФ-излучений.

Как УФ-излучение используется в медицинской практике?

В медицине есть понятие «ультрафиолетового голодания», что может возникнуть в случае длительного избегания солнечного света. При этом могут возникнут неприятные патологии, избежать которые легко, используя искусственные источники ультрафиолета.

Их небольшое воздействие способно компенсировать дефицит зимней нехватки витамина D.

Помимо этого, подобная терапия применима в случае проблем с суставами, заболевания кожи и аллергических реакций.

При помощи УФ-излучения можно:

  • Повысить гемоглобин, но снизить уровень сахара;
  • Нормализовать работу щитовидки;
  • Улучшить и устранить проблемы дыхательной и эндокринной системы;
  • При помощи установок с ультрафиолетовым излучением дизенфицируют помещения и хирургические инструменты;
  • УФ-лучи обладают бактерицидными свойствами, что особенно полезно для больных с гнойными ранами.

ВАЖНО! Всегда, применяя подобные излучения на практике, стоит ознакомиться не только с положительными, но и с негативными сторонами их воздействия. Применять искусственное, как и природное УФ-излучение в качестве лечения категорически запрещается при онкологии, кровотечениях, гипертонии 1 и 2 стадии, туберкулёзе активной формы.

В сельскохозяйственном производстве для технологического воздействия оптическим излучением на живые организмы и рас­тения широко применяют специальные источники ультрафиоле­тового (100…380 нм) и инфракрасного (780…106 нм) излучения, а также источники фотосинтетически активного излучения (400…700 нм).

По распределению потока оптического излучения между раз­личными областями ультрафиолетового спектра различают источ­ники общего ультрафиолетового (100…380 нм), витального (280…315 нм) и преимущественно бактерицидного (100…280 нм) действия.

Источники общего ультрафиолетового излучения - дуговые ртут­ные трубчатые лампы высокого давления типа ДРТ (ртутно-кварцевые лампы). Лампа типа ДРТ представляет собой трубку из кварцевого стекла, в концы которой впаяны вольфрамовые элект­роды. В лампу вводится дозированное количество ртути и аргона. Для удобства крепления к арматуре лампы ДРТ снабжены метал­лическими держателями. Лампы ДРТ выпускаются мощностью 2330, 400, 1000 Вт.

Витальные люминесцентные лампы типа ЛЭ выполнены в виде цилиндрических трубок из увиолевого стекла, внутренняя поверх­ность которых покрыта тонким слоем люминофора, излучающего в ультрафиолетовой области спектра световой поток с длиной вол­ны 280…380 нм (максимум излучения в области 310…320 нм). Кро­ме сорта стекла, диаметра трубки и состава люминофора, трубча­тые витальные лампы конструктивно не отличаются от трубчатых люминесцентных ламп низкого давления и включаются в сеть с помощью тех же устройств (дросселя и стартера), что и люминес­центные лампы той же мощности. Лампы ЛЭ выпускаются мощностью 15 и 20 Вт. Кроме этого разработаны и витально-осветительные люминесцентные лампы.

Бактерицидные лампы - это источники коротковолнового ульт­рафиолетового излучения, большая часть которого (до 80 %) при­ходится на длину волны 254 нм. Конструкция бактерицидных ламп принципиально не отличается от трубчатых люминесцент­ных ламп низкого давления, но стекло с легирующими присадка­ми, применяемое для их изготовления, хорошо пропускает излу­чение в диапазоне спектра менее 380 нм. Кроме этого колба бакте­рицидных ламп не покрыта люминофором и имеет несколько уменьшенные размеры (диаметр и длину) по сравнению с анало­гичными люминесцентными лампами общего назначения одина­ковой мощности.

Бактерицидные лампы включают в сеть с помощью тех же уст­ройств, что и люминесцентные лампы.

Лампы повышенного фотосинтетически активного излучения . Эти лампы применяют при искусственном облучении растений. К ним относятся люминесцентные фотосинтетические лампы низкого давления типов ЛФ и ЛФР (Р означает рефлекторные), дуговые ртутные люминесцентные фотосинтетические высокого давления типа ДРЛФ, металлогалогенные дуговые ртутные высокого давле­ния типов ДРФ, ДРИ, ДРОТ, ДМЧ, дуговые ртутные вольфрамо­вые типа ДРВ.

Люминесцентные фотосинтетические лампы низкого давления типов ЛФ и ЛФР по конструкции аналогичны люминесцент­ным лампам низкого давления и отличаются от них только со­ставом люминофора, а следовательно, и спектром излучения. В лампах типа ЛФ относительно высокая плотность излучения лежит в диапазонах волн 400…450 и 600…700 нм, на которые приходится максимум спектральной чувствительности зеленых растений.

Лампы ДРЛФ конструктивно сходны с лампами типа ДРЛ, но в отличие от последних у них увеличено излучение в красной части спектра. Под слоем люминофора у ламп ДРЛФ есть отражающее покрытие, обеспечивающее требуемое распределение лучистого потока в пространстве.

Источником инфракрасного излучения в простейшем случае может служить обычная осветительная лампа накаливания . В ее спектре излучения инфракрасная область занимает почти 75 %, причем увеличить поток инфракрасных лучей можно за счет уменьшения на 10…15% подводимого к лампе напряжения или окраской колбы в синий или красный цвет. Однако основным ис­точником инфракрасного излучения являются специальные инф­ракрасные зеркальные лампы.

Инфракрасные зеркальные лампы (термоизлучатели) отлича­ются от обычных осветительных ламп параболоидной формой колбы и более низкой температурой нити накаливания. Относи­тельно низкая температура нити накаливания ламп-термоизлучателей позволяет сместить спектр их излучения в инфракрасную область и увеличить среднюю продолжительность горения до 5000 ч.

Внутренняя часть колбы таких ламп, прилегающая к цоколю, покрыта зеркальным слоем, что позволяет перераспределять и концентрировать в заданном направлении излучаемый инфра­красный поток. Для снижения интенсивности видимого излуче­ния нижнюю часть колбы некоторых инфракрасных ламп покры­вают красным или синим теплостойким лаком.