Химические свойства дисахаридов и полисахаридов. Дисахариды и полисахариды

К широко распространенным и имеющим важное значение как компоненты пищевых продуктов, относятся дисахариды: сахароза, лактоза, мальтоза и др.

По химическому строению дисахариды являются гликозидами моносахаридов. Большинство дисахаридов состоят из гексоз, но в природе известны дисахариды, состоящие из одной молекулы гексозы и одной молекулы пентозы.

При образовании дисахарида одна молекула моносахарида всегда образует связь со второй молекулой с помощью своего полуацетального гидроксила. Другая молекула моносахарида может соединяться либо также полуацетальным гидрокислом, либо одним из спиртовых гидроксилов. В последнем случае в молекуле дисахарида будет оставаться свободным один полуацетальный гидроксил.

Мальтоза – резервный олигосахарид – обнаружена во многих растениях в небольших количествах, в больших количествах накапливается в солоде – обычно в семенах ячменя, проросших в определенных условиях. Поэтому мальтозу часто называют солодовым сахаром. Мальтоза образуется в растительных и животных организмах в результате гидролиза крахмала под действием амилаз.

Мальтоза содержит два остатка Д-глюкопиранозы, соединенных между собой a(1®4)гликозидной связью.

Мальтоза обладает восстанавливающими свойствами, что используется при ее количественном определении. Она легко растворима в воде. Раствор обнаруживает мутаротацию.

Под действием фермента a-глюкозидазы (мальтазы) солодовый сахар гидролизуется с образованием двух молекул глюкозы:

Мальтоза сбраживается дрожжами. Эта способность мальтозы используется в технологии бродильных производств при производстве пива, спирта этилового и т.д. из крахмалсодержащего сырья.

Лактоза – резервный дисахарид (молочный сахар) – содержится в молоке (4-5%) и получается в сыроваренной промышленности из молочной сыворотки после отделения творога. Сбраживается лишь особыми лактозными дрожжами, содержащимися в кефире и кумысе. Лактоза построена из остатков b-Д-галактопиранозы и a-Д-глюкопиранозы, соединенных между собой b-(1→4)-гликозидной связью. Лактоза является восстанавливающим дисахаридом, причем свободный полуацетальный гидроксил принадлежит остатку глюкозы, а кислородный мостик связывает первый углеродный атом остатка галактозы с четвертым атомом углерода остатка глюкозы.

Лактоза гидролизуется под действием фермента b-галактозидазы (лактазы):

Лактоза отличается от других сахаров отсутствием гигроскопичности – она не отсыревает. Молочный сахар применяется как фармацевтический препарат и как питательное средство для грудных детей. Водные растворы лактозы мутаротируют, лактоза имеет в 4-5 раз менее сладкий вкус, чем сахароза.

Сахароза (тростниковый сахар, свекловичный сахар) – это резервный дисахарид – чрезвычайно широко распространена в растениях, особенно много ее в корнеплодах свеклы (от 14 до 20%), а также в стеблях сахарного тростника (от 14 до 25%). Сахароза является транспортным сахаром, в виде которого углерод и энергия транспортируются по растению. Именно в виде сахарозы углеводы перемещаются из мест синтеза (листья) к месту, где они откладываются в запас (плоды, корнеплоды, семена).

Сахароза состоит из a-Д-глюкопиранозы и b-Д-фруктофуранозы, соединенных a-1→b-2-связью за счет гликозидных гидроксилов:

Сахароза не содержит свободного полуацетального гидроксила, поэтому она не способна к окси-оксо-таутомерии и является невосстанавливающим дисахаридом.

При нагревании с кислотами или под действием ферментов a-глюкозидазы и b-фруктофуранозидазы (инвертазы) сахароза гидролизуется с образованием смеси равных количеств глюкозы и фруктозы, которая называется инвертным сахаром.

Важнейшие дисахариды - сахароза, мальтоза и лактоза. Все они имеют общую формулу С12Н22О11, но их строение различное.

Сахароза состоит из 2х циклов, связанных между собой за счет гликозидного гидроксида:

Мальтоза состоит из 2х остатков глюкозы:

Лактоза:

Все дисахариды представляют собой бесцветные кристаллы, сладкие на вкус, хорошо растворимы в воде.

Химические свойства дисахаридов.

1)Гидролиз. В результате связь между 2мя циклами рвется и образуются моносахариды:

Восстанавливающие дихариды - мальтоза и лактоза. Они реагируют с аммиачным раствором оксида серебра:

Могут восстанавливать гидроксид меди (II) до оксида меди (I):

Восстановительная способность объясняется цикличностью формы и содержанием гликозидного гидроксила.

В сахарозе нет гликозидного гидроксила, поэтому циклическая форма не может раскрываться и переходить в альдегидную.

Применение дисахаридов.

Самый распространенный дисахарид - сахароза.

Дисахариды (мальтоза, лактоза, сахароза)

Это источник углеводов в пище человека.

Лактоза содержится в молоке и получается из него же.

Мальтоза содержится в проросших семенах хлебных злаков и образуется при ферментативном гидролизе крахмала.

Дополнительные материалы по теме: Дисахариды. Свойства дисахаридов.

Восстанавливающие дисахариды

К числу восстанавливающих дисахаридов относится мальтоза или солодовый сахар. Получается мальтоза при частичном гидролизе крахмала в присутствии ферментов или водным раствором кислоты. Мальтоза построена из двух молекул глюкозы (т.е. это глюкозид). Глюкоза присутствует в мальтозе в форме циклического полуацеталя. Причем связь между двумя циклами образуют гликозидный гидроксил одной молекулы и гидроксил четвертого тетраэдра другой. Особенность строения молекулы мальтозы в том, что она построена из α-аномеров глюкозы:

Наличие свободного гликозидного гидроксила обуславливает основные свойства мальтозы:

Дисахариды

Способность к таутомерии и мутаротации:

Мальтоза может окисляться и восстанавливаться:

Для восстанавливающего дисахарида можно получить фенилгидразон и озазон:

Восстанавливающий дисахарид можно алкилировать метиловым спиртом в присутствии хлористого водорода:

Независимо от того восстанавливающий или не восстанавливающий — дисахарид может быть алкилирован йодистым метилом в присутствии влажной окиси серебра или ацетилирован уксусным ангидридом. При этом в реакцию вступают все гидроксильные группы дисахарида:

Другим продуктом гидролиза высшего полисахарида является дисахарид целлобиоза:

Целлобиоза, также как и мальтоза построена из двух остатков глюкозы. Принципиальное отличие в том, что в молекуле целлобиозы остатки связаны β-гликозидным гидроксилом.

Судя по строению молекулы целлобиозы она должна быть восстанавливающим сахаром. Ей также присущи все химические свойства дисахаридов.

Еще одним восстанавливающим сахаром является лактоза – молочный сахар. Этот дисахарид содержится в каждом молоке и придает вкус молока, хотя является менее сладким, чем сахар. Построен из остатков β-D-галактозы и α-D-глюкозы. Галактоза является эпимером глюкозы и отличается конфигурацией четвертого тетраэдра:

Лактозе присущи все свойства восстанавливающих сахаров: таутомерия, мутаротация, окисление до лактобионовой кислоты, восстановление, образование гидразонов и озазонов.

ПОСМОТРЕТЬ ЕЩЕ:

Вопрос 2. Дисахариды

Образование гликозидов

Гликозидная связь имеет важное биологическое значение, потому что именно с помощью этой связи осуществляется ковалентное связывание моносахаридов в составе олиго- и полисахаридов. При образовании гликозидной связи аномерная ОН-группа одного моносахарида взаимодействует с ОН-группой другого моносахарида или спирта. При этом происходит отщепление молекулы воды и образование О-гликозидной связи . Все линейные олигомеры (кроме дисахаридов) или полимеры содержат мономерные остатки, участвующие в образовании двух гликозидных связей, кроме концевых остатков. Некоторые гликозидные остатки могут образовывать три гликозидные связи, что характерно для разветвленных олиго- и полисахаридов. Олиго- и полисахариды могут иметь концевой остаток моносахарида со свободной аномерной ОН-группой, не использованной при образовании гликозидной связи. В этом случае при размыкании цикла возможно образование свободной карбонильной группы, способной окисляться. Такие олиго- и полисахариды обладают восстанавливающими свойствами и поэтому называются восстанавливающими или редуцирующими.

Рисунок — Строение полисахарида.

А. Образование a-1,4- и a-1,6-гликозидных связей.

Б. Строение линейного полисахарида:

1 – a-1,4-гликозидные связи между маномерами;

2 – не восстанавливающий конец (не возможно образование свободной карбонильной группы у аномерного углевода);

3 – восстанавливающий конец (возможно размыкание цикла с образованием свободной карбонильной группы у аномерного углерода).

Аномерная ОН-группа моносахарида может взаимодействовать с NH2-группой других соединений, что приводит к образованию N-гликозидной связи. Подобная связь присутствует в нуклеотидах и гликопротеинах.

Рисунок — Структура N-гликозидной связи

Вопрос 2. Дисахариды

Олигосахариды содержат от двух до десяти остатков моносахаридов, соединённых гликозидной связью. Дисахариды – наиболее распространённые олигомерные углеводы, встречающиеся в свободной форме, т.е. не связанной с другими соединениями. По химической природе дисахариды представляют собой гликозиды, которые содержат 2 моносахарида, соединённые гликозидной связью в a- или b-конфигурации. В пище содержатся в основном такие дисахариды, как сахароза, лактоза и мальтоза.

Рисунок — Дисахариды пищи

Сахароза – дисахарид, состоящий из a-D-глюкозы и b-D-фруктозы, соединенных a,b-1,2-гликозидной связью. В сахарозе обе аномерные ОН-группы остатков глюкозы и фруктозы участвуют в образовании гликозидной связи. Следовательно, сахароза не относится к восстанавливающим сахарам . Сахароза – растворимый дисахарид со сладким вкусом.

Дисахариды. Свойства дисахаридов.

Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Последнее объясняет возникновение тривиального названия сахарозы – «тростниковый сахар».

Лактоза – молочный сахар. Лактоза гидролизуется с образованием глюкозы и галактозы. Важнейший дисахарид молока млекопитающих. В коровьем молоке содержится до 5% лактозы, в женском – до 8%. В лактозе аномерная ОН-группа первого углеродного атома остатка D-галактозы связана b-гликозидной связью с четвёртым углеродным атомом D-глюкозы (b-1,4-связь). Поскольку аномерный атом углерода остатка глюкозы не участвует в образовании гликозидной связи, следовательно, лактоза относится к восстанавливающим сахарам .

Мальтоза поступает с продуктами, содержащими частично гидролизованный крахмал, например, солод, пиво. Мальтоза образуется при расщеплении крахмала в кишечнике и частично в ротовой полости. Мальтоза состоит из двух остатков D-глюкозы, соединенных a-1,4-гликозидной связью . Относится к восстанавливающим сахарам.

Вопрос 3. Полисахариды:

Классификация

В зависимости от строения остатков моносахаридов полисахариды можно разделить на гомополисахариды (все мономеры идентичны) и гетерополисахариды (мономеры различны). Оба типа полисахаридов могут иметь как линейное расположение мономеров, так и разветвленное.

Различают следующие структурные различия между полисахаридами:

  • строение моносахаридов, составляющих цепь;
  • тип гликозидных связей, соединяющих мономеры в цепи;
  • последовательность остатков моносахаридов в цепи.

В зависимости от выполняемых ими функций (биологическая роль) полисахариды можно разделить на 3 основные группы:

  • резервные полисахариды, выполняющие энергетическую функцию. Эти полисахариды служат источником глюкозы, используемым организмом по мере необходимости. Резервная функция углеводов обеспечивается их полимерной природой. Полисахариды труднее растворимы , чем моносахариды, следовательно, они не влияют на осмотическое давление и поэтому могут накапливаться в клетке , например, крахмал – в клетках растений, гликоген – в клетках животных;
  • структурные полисахариды, обеспечивающие клеткам и органам механическую прочность;
  • полисахариды, входящие в состав межклеточного матрикса , принимают участие в образовании тканей, а также в пролиферации и дифференцировке клеток. Полисахариды межклеточного матрикса водорастворимы и сильно гидратированы.

ПОСМОТРЕТЬ ЕЩЕ:

Структурная формула

Молекулярная масса: 342,297

Мальтоза (от англ. malt - солод) - солодовый сахар, 4-О-α-D-глюкопиранозил-D-глюкоза, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений.
Биосинтез мальтозы из β-D-глюкопиранозилфосфата и D-глюкозы известен только у некоторых видов бактерий. В животном и растительном организмах мальтоза образуется при ферментативном расщеплении крахмала и гликогена (см. Амилазы).
Мальтоза легко усваивается организмом человека. Расщепление мальтозы до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах. Генетически обусловленное отсутствие этого фермента в слизистой оболочке кишечника человека приводит к врождённой непереносимости мальтозы - тяжёлому заболеванию, требующему исключения из рациона мальтозы, крахмала и гликогена или добавления к пище фермента мальтазы.

Химическое название

α-Мальтоза — (2R,3R,4S,5R,6R)-5-[(2R,3R,4S,5R,6R)-2,3,4-тригидрокси-6-(гидроксиметил)оксанил]окси-6-(гидроксиметил)оксан-2,3,4-триол
β-Мальтоза — (2S,3R,4S,5R,6R)-5-[(2R,3R,4S,5R,6R)-2,3,4-тригидрокси-6-(гидроксиметил)оксанил]окси-6-(гидроксиметил)оксан-2,3,4-триол

Физические свойства

Мальтоза является восстанавливающим сахаром, так как имеет незамещённую полуацетальную гидроксильную группу.
При кипячении мальтозы с разбавленной кислотой и при действии фермента мальтоза гидролизуется (образуются две молекулы глюкозы C6H12O6).
C12H22O11 + H2O → 2C6H12O6

(от англ. malt ≈ солод), солодовый сахар, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. М. легко растворима в воде, имеет сладкий вкус; является восстанавливающим сахаром, так как имеет незамещённую полуацетальную гидроксильную группу. Биосинтез М. из b-D-глюкопиранозилфосфата и D-глюкозы известен только у некоторых видов бактерий. В животном и растительном организмах М.

образуется при ферментативном расщеплении крахмала и гликогена (см. Амилазы). Расщепление М. до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах. Генетически обусловленное отсутствие этого фермента в слизистой оболочке кишечника человека приводит к врождённой непереносимости М. ≈ тяжёлому заболеванию, требующему исключения из рациона М., крахмала и гликогена или добавления к пище фермента мальтазы.

Лит.: Химия углеводов, М., 1967; Харрис Г., Основы биохимической генетики человека, перевод с английского, М., 1973.

  • Сахароза - состоит из остатков глюкозы и фруктозы .
  • Мальтоза - состоит из двух остатков глюкозы.

Физические свойства

Дисахариды - твёрдые, кристаллические вещества, от слегка белого до коричневатого цвета, хорошо растворимые в воде и в 45 - 48°-градусном спирте, плохо растворимы в 96-градусном спирте , имеют оптическую активность ; сладкие на вкус .

Химические свойства

  • При гидролизе дисахариды расщепляются на составляющие их моносахариды за счёт разрыва гликозидных связей между ними. Данная реакция является обратной процессу образования дисахаридов из моносахаридов.
  • При конденсации дисахаридов образуются молекулы полисахаридов .

По химическим свойствам дисахариды можно разделить на две группы:

  1. восстанавливающие;
  2. невосстанавливающие.

Восстанавливающие (редуцирующие) дисахариды

В данных дисахаридах один из моносахаридных остатков участвует в образовании гликозидной связи за счет гидроксильной группы чаще всего при С-4 или С-6, реже при С-3. В дисахариде имеется свободная полуацетальная гидроксильная группа, вследствие чего сохраняется способность к раскрытию цикла. Возможностью осуществления цикло-оксо-таутометрии обусловлены восстановительные свойства таких дисахаридов и мутаротация их свежеприготовленных растворов .

Лактоза

Лактоза (от лат. lactis - молоко) C 12 H 22 O 11 - углевод группы дисахаридов, содержится в молоке и молочных продуктах. Молекула лактозы состоит из остатков молекул глюкозы и галактозы , которые соединены между собой 1,4-гликозидной связью. Водные растворы лактозы мутаротируют . Вступает в реакцию с фелинговой жидкостью только после кипячения в течение 15 минут и реактивом Толленса , реагирует с фенилгидразином , образуя озазон . Лактоза отличается от других дисахаридов отсутствием гигроскопичности - она не отсыревает. Это её свойство имеет большое практическое значение в фармации : если нужно приготовить с сахаром какой-либо порошок, содержащий легко гидролизующееся лекарство, то берут молочный сахар; если же взять другой сахар , то он быстро отсыреет и легко гидролизующееся лекарственное вещество быстро разложится. Значение лактозы очень велико, так как она является важным питательным веществом, особенно для растущих организмов человека и млекопитающих .

Мальтоза

Целлобиоза

Целлобиоза 4-(β-глюкозидо)-глюкоза - дисахарид, состоящий из двух остатков глюкозы , соединённых β-гликозидной связью; основная структурная единица целлюлозы. Высшие животные не в состоянии усваивать целлюлозу , так как не обладают разлагающим её ферментом. Однако улитки , гусеницы и черви, содержащие ферменты целлобиазу и целлюлазу, способны расщеплять (и тем самым утилизовать) содержащие целлобиозу растительные остатки. Целлобиоза, как и лактоза , имеет 1→4 β-гликозидную связь и является восстанавливающим дисахаридом, но в отличие от лактозы при полном гидролизе даёт только D-глюкозу .

Невосстанавливающие (нередуцирующие) дисахариды

Невосстанавливающие дисахариды не имеют ОН-группы ни при одном аномерном центре, в результате чего, они не вступают в реакции с фелинговой жидкостью и реактивом Толленса .

Сахароза

Трегалоза

Нахождение в природе

Дисахариды широко распространены в животных и растительных организмах. Они встречаются в свободном состоянии (как продукты биосинтеза или частичного гидролиза полисахаридов), а также как структурные компоненты гликозидов и других соединений. Многие дисахариды получают из природных источников, так, например, для сахарозы основными источниками служат либо сахарная свёкла либо сахарный тростник .

Биологическая роль

Напишите отзыв о статье "Дисахариды"

Примечания

Литература

Отрывок, характеризующий Дисахариды

Но если даже предположить, что Александр I пятьдесят лет тому назад ошибался в своем воззрении на то, что есть благо народов, невольно должно предположить, что и историк, судящий Александра, точно так же по прошествии некоторого времени окажется несправедливым, в своем воззрении на то, что есть благо человечества. Предположение это тем более естественно и необходимо, что, следя за развитием истории, мы видим, что с каждым годом, с каждым новым писателем изменяется воззрение на то, что есть благо человечества; так что то, что казалось благом, через десять лет представляется злом; и наоборот. Мало того, одновременно мы находим в истории совершенно противоположные взгляды на то, что было зло и что было благо: одни данную Польше конституцию и Священный Союз ставят в заслугу, другие в укор Александру.
Про деятельность Александра и Наполеона нельзя сказать, чтобы она была полезна или вредна, ибо мы не можем сказать, для чего она полезна и для чего вредна. Если деятельность эта кому нибудь не нравится, то она не нравится ему только вследствие несовпадения ее с ограниченным пониманием его о том, что есть благо. Представляется ли мне благом сохранение в 12 м году дома моего отца в Москве, или слава русских войск, или процветание Петербургского и других университетов, или свобода Польши, или могущество России, или равновесие Европы, или известного рода европейское просвещение – прогресс, я должен признать, что деятельность всякого исторического лица имела, кроме этих целей, ещь другие, более общие и недоступные мне цели.
Но положим, что так называемая наука имеет возможность примирить все противоречия и имеет для исторических лиц и событий неизменное мерило хорошего и дурного.
Положим, что Александр мог сделать все иначе. Положим, что он мог, по предписанию тех, которые обвиняют его, тех, которые профессируют знание конечной цели движения человечества, распорядиться по той программе народности, свободы, равенства и прогресса (другой, кажется, нет), которую бы ему дали теперешние обвинители. Положим, что эта программа была бы возможна и составлена и что Александр действовал бы по ней. Что же сталось бы тогда с деятельностью всех тех людей, которые противодействовали тогдашнему направлению правительства, – с деятельностью, которая, по мнению историков, хороша и полезна? Деятельности бы этой не было; жизни бы не было; ничего бы не было.
Если допустить, что жизнь человеческая может управляться разумом, – то уничтожится возможность жизни.

Если допустить, как то делают историки, что великие люди ведут человечество к достижению известных целей, состоящих или в величии России или Франции, или в равновесии Европы, или в разнесении идей революции, или в общем прогрессе, или в чем бы то ни было, то невозможно объяснить явлений истории без понятий о случае и о гении.
Если цель европейских войн начала нынешнего столетия состояла в величии России, то эта цель могла быть достигнута без всех предшествовавших войн и без нашествия. Если цель – величие Франции, то эта цель могла быть достигнута и без революции, и без империи. Если цель – распространение идей, то книгопечатание исполнило бы это гораздо лучше, чем солдаты. Если цель – прогресс цивилизации, то весьма легко предположить, что, кроме истребления людей и их богатств, есть другие более целесообразные пути для распространения цивилизации.
Почему же это случилось так, а не иначе?
Потому что это так случилось. «Случай сделал положение; гений воспользовался им», – говорит история.
Но что такое случай? Что такое гений?
Слова случай и гений не обозначают ничего действительно существующего и потому не могут быть определены. Слова эти только обозначают известную степень понимания явлений. Я не знаю, почему происходит такое то явление; думаю, что не могу знать; потому не хочу знать и говорю: случай. Я вижу силу, производящую несоразмерное с общечеловеческими свойствами действие; не понимаю, почему это происходит, и говорю: гений.
Для стада баранов тот баран, который каждый вечер отгоняется овчаром в особый денник к корму и становится вдвое толще других, должен казаться гением. И то обстоятельство, что каждый вечер именно этот самый баран попадает не в общую овчарню, а в особый денник к овсу, и что этот, именно этот самый баран, облитый жиром, убивается на мясо, должно представляться поразительным соединением гениальности с целым рядом необычайных случайностей.
Но баранам стоит только перестать думать, что все, что делается с ними, происходит только для достижения их бараньих целей; стоит допустить, что происходящие с ними события могут иметь и непонятные для них цели, – и они тотчас же увидят единство, последовательность в том, что происходит с откармливаемым бараном. Ежели они и не будут знать, для какой цели он откармливался, то, по крайней мере, они будут знать, что все случившееся с бараном случилось не нечаянно, и им уже не будет нужды в понятии ни о случае, ни о гении.
Только отрешившись от знаний близкой, понятной цели и признав, что конечная цель нам недоступна, мы увидим последовательность и целесообразность в жизни исторических лиц; нам откроется причина того несоразмерного с общечеловеческими свойствами действия, которое они производят, и не нужны будут нам слова случай и гений.
Стоит только признать, что цель волнений европейских народов нам неизвестна, а известны только факты, состоящие в убийствах, сначала во Франции, потом в Италии, в Африке, в Пруссии, в Австрии, в Испании, в России, и что движения с запада на восток и с востока на запад составляют сущность и цель этих событий, и нам не только не нужно будет видеть исключительность и гениальность в характерах Наполеона и Александра, но нельзя будет представить себе эти лица иначе, как такими же людьми, как и все остальные; и не только не нужно будет объяснять случайностию тех мелких событий, которые сделали этих людей тем, чем они были, но будет ясно, что все эти мелкие события были необходимы.
Отрешившись от знания конечной цели, мы ясно поймем, что точно так же, как ни к одному растению нельзя придумать других, более соответственных ему, цвета и семени, чем те, которые оно производит, точно так же невозможно придумать других двух людей, со всем их прошедшим, которое соответствовало бы до такой степени, до таких мельчайших подробностей тому назначению, которое им предлежало исполнить.

Основной, существенный смысл европейских событий начала нынешнего столетия есть воинственное движение масс европейских народов с запада на восток и потом с востока на запад. Первым зачинщиком этого движения было движение с запада на восток. Для того чтобы народы запада могли совершить то воинственное движение до Москвы, которое они совершили, необходимо было: 1) чтобы они сложились в воинственную группу такой величины, которая была бы в состоянии вынести столкновение с воинственной группой востока; 2) чтобы они отрешились от всех установившихся преданий и привычек и 3) чтобы, совершая свое воинственное движение, они имели во главе своей человека, который, и для себя и для них, мог бы оправдывать имеющие совершиться обманы, грабежи и убийства, которые сопутствовали этому движению.

Углеводы - органические соединения, чаще всего природного происхождения, состоящие только из углерода, водорода и кислорода.

Углеводы играют огромную роль в жизнедеятельности всех живых организмов.

Свое название данный класс органических соединений получил за то, что первые изученные человеком углеводы имели общую формулу вида C x (H 2 O) y . Т.е. их условно посчитали соединениями углерода и воды. Однако позднее оказалось, что состав некоторых углеводов отклоняется от этой формулы. Например, такой углевод как дезоксирибоза имеет формулу С 5 Н 10 О 4 . В то же время существуют некоторые соединения, формально соответствующие формуле C x (H 2 O) y , однако к углеводам не относящиеся, как, например, формальдегид (СН 2 О) и уксусная кислота (С 2 Н 4 О 2).

Тем не менее, термин «углеводы» исторически закрепился за данным классом соединений, в связи с чем повсеместно используется и в наше время.

Классификация углеводов

В зависимости от способности углеводов расщепляться при гидролизе на другие углеводы с меньшей молекулярной массой их делят на простые (моносахариды) и сложные (дисахариды, олигосахариды, полисахариды).

Как легко догадаться, из простых углеводов, т.е. моносахаридов, нельзя гидролизом получить углеводы с еще меньшей молекулярной массой.

При гидролизе одной молекулы дисахарида образуются две молекулы моносахарида, а при полном гидролизе одной молекулы любого полисахарида получается множество молекул моносахаридов.

Химические свойства моносахаридов на примере глюкозы и фруктозы

Самыми распространенными моносахаридами являются глюкоза и фруктоза, имеющие следующие структурные формулы:

Как можно заметить, и в молекуле глюкозы, и в молекуле фруктозы присутствует по 5 гидроксильных групп, в связи с чем их можно считать многоатомными спиртами.

В составе молекулы глюкозы имеется альдегидная группа, т.е. фактически глюкоза является многоатомным альдегидоспиртом.

В случае фруктозы можно обнаружить в ее молекуле кетонную группу, т.е. фруктоза является многоатомным кетоспиртом.

Химические свойства глюкозы и фруктозы как карбонильных соединений

Все моносахариды могут реагировать в присутствии катализаторов с водородом. При этом карбонильная группа восстанавливается до спиртовой гидроксильной. Так, в частности, гидрированием глюкозы в промышленности получают искусственный подсластитель – гексаатомный спирт сорбит:

Молекула глюкозы содержит в своем составе альдегидную группу, в связи с чем логично предположить, что ее водные растворы дают качественные реакции на альдегиды. И действительно, при нагревании водного раствора глюкозы со свежеосажденным гидроксидом меди (II) так же, как и в случае любого другого альдегида, наблюдается выпадение из раствора кирпично-красного осадка оксида меди (I). При этом альдегидная группа глюкозы окисляется до карбоксильной – образуется глюконовая кислота:

Также глюкоза вступает и в реакцию «серебряного зеркала» при действии на нее аммиачного раствора оксида серебра. Однако, в отличие от предыдущей реакции вместо глюконовой кислоты образуется ее соль – глюконат аммония, т.к. в растворе присутствует растворенный аммиак:

Фруктоза и другие моносахариды, являющиеся многоатомными кетоспиртами, в качественные реакции на альдегиды не вступают.

Химические свойства глюкозы и фруктозы как многоатомных спиртов

Поскольку моносахариды, в том числе глюкоза и фруктоза, имеют в составе молекул несколько гидроксильных групп. Все они дают качественную реакцию на многоатомные спирты. В частности, в водных растворах моносахаридов растворяется свежеосажденный гидроксид меди (II). При этом вместо голубого осадка Cu(OH) 2 образуется темно-синий раствор комплексных соединений меди.

Реакции брожения глюкозы

Спиртовое брожение

При действии на глюкозу некоторых ферментов глюкоза способна превращаться в этиловый спирт и углекислый газ:

Молочнокислое брожение

Помимо спиртового типа брожения существует также и немало других. Например, молочнокислое брожение, которое протекает при скисании молока, квашении капусты и огурцов:

Особенности существования моносахаридов в водных растворах

Моносахариды существуют в водном растворе в трех формах – двух циклических (альфа- и бета-) и одной нециклической (обычной). Так, например, в растворе глюкозы существует следующее равновесие:

Как можно видеть, в циклических формах отсутствует альдегидная группа, в связи с тем что она участвует в образовании цикла. На ее основе образуется новая гидроксильная группа, которую называют ацетальным гидроксилом. Аналогичные переходы между циклическими и нециклической формами наблюдаются и для всех других моносахаридов.

Дисахариды. Химические свойства.

Общее описание дисахаридов

Дисахаридами называют углеводы, молекулы которых состоят из двух остатков моносахаридов, связанных между собой за счет конденсации двух полуацетальных гидроксилов либо же одного спиртового гидроксила и одного полуацетального. Связи, образующиеся таким образом между остатками моносахаридов, называют гликозидными. Формулу большинства дисахаридов можно записать как C 12 H 22 O 11 .

Наиболее часто встречающимся дисахаридом является всем знакомый сахар, химиками называемый сахарозой . Молекула данного углевода образована циклическими остатками одной молекулы глюкозы и одной молекулы фруктозы. Связь между остатками дисахаридов в данном случае реализуется за счет отщепления воды от двух полуацетальных гидроксилов:

Поскольку связь между остатками моносахаридов образована при конденсации двух ацетальных гидроксилов, для молекулы сахара невозможно раскрытие ни одного из циклов, т.е. невозможен переход в карбонильную форму. В связи с этим сахароза не способна давать качественные реакции на альдегиды.

Подобного рода дисахариды, которые не дают качественные реакции на альдегиды, называют невосстанавливающими сахарами.

Тем не менее, существуют дисахариды, которые дают качественные реакции на альдегидную группу. Такая ситуация возможна, когда в молекуле дисахарида остался полуацетальный гидроксил из альдегидной группы одной из исходных молекул моносахаридов.

В частности, в реакцию с аммиачным раствором оксида серебра, а также гидроксидом меди (II) подобно альдегидам вступает мальтоза. Связано это с тем, что в её водных растворах существует следующее равновесие:

Как можно видеть, в водных растворах мальтоза существует в виде двух форм – с двумя циклами в молекуле и одним циклом в молекуле и альдегидной группой. По этой причине мальтоза, в отличие от сахарозы, дает качественную реакцию на альдегиды.

Гидролиз дисахаридов

Все дисахариды способны вступать в реакцию гидролиза, катализируемую кислотами, а также различными ферментами. В ходе такой реакции из одной молекулы исходного дисахарида образуется две молекулы моносахарида, которые могут быть как одинаковыми, так и различными в зависимости от состава исходного моносахарида.

Так, например, гидролиз сахарозы приводит к образованию глюкозы и фруктозы в равных количествах:

А при гидролизе мальтозы образуется только глюкоза:

Дисахариды как многоатомные спирты

Дисахариды, являясь многоатомными спиртами, дают соответствующую качественную реакцию с гидроксидом меди (II), т.е. при добавлении их водного раствора ко свежеосажденному гидроксиду меди (II) нерастворимый в воде голубой осадок Cu(OH) 2 растворяется с образованием темно-синего раствора.

Полисахариды. Крахмал и целлюлоза

Полисахариды - сложные углеводы, молекулы которых состоят из большого числа остатков моносахаридов, связанных между собой гликозидными связями.

Есть и другое определение полисахаридов:

Полисахаридами называют сложные углеводы, молекулы которых образуют при полном гидролизе большое число молекул моносахаридов.

В общем случае формула полисахаридов может быть записана как (C 6 H 10 O 5) n .

Крахмал – вещество, представляющее собой белый аморфный порошок, не растворимый в холодной воде и частично растворимый в горячей с образованием коллоидного раствора, называемого в быту крахмальным клейстером.

Крахмал образуется из углекислого газа и воды в процессе фотосинтеза в зеленых частях растений под действием энергии солнечного света. В наибольших количествах крахмал содержится в картофельных клубнях, пшеничных, рисовых и кукурузных зернах. По этой причине указанные источники крахмала и являются сырьем для его получения в промышленности.

Целлюлоза – вещество, в чистом состоянии представляющее собой белый порошок, не растворимый ни в холодной, ни в горячей воде. В отличие от крахмала целлюлоза не образует клейстер. Практически из чистой целлюлозы состоит фильтровальная бумага, хлопковая вата, тополиный пух. И крахмал, и целлюлоза являются продуктами растительного происхождения. Однако, роли, которые они играют в жизни растений, различны. Целлюлоза является в основном строительным материалом, в частности, главным образом ей образованы оболочки растительных клеток. Крахмал же несет в основном запасающую, энергетическую функцию.

Химические свойства крахмала и целлюлозы

Горение

Все полисахариды, в том числе крахмал и целлюлоза, при полном сгорании в кислороде образуют углекислый газ и воду:

Образование глюкозы

При полном гидролизе как крахмала, так и целлюлозы образуется один и тот же моносахарид – глюкоза:

Качественная реакция на крахмал

При действии йода на что-либо, в чем содержится крахмал, появляется синее окрашивание. При нагревании синяя окраска исчезает, при охлаждении появляется вновь.
При сухой перегонке целлюлозы, в частности древесины, происходит ее частичное разложение с образованием таких низкомолекулярных продуктов как метиловый спирт, уксусная кислота, ацетон и т.д.

Поскольку и в молекулах крахмала, и в молекулах целлюлозы имеются спиртовые гидроксильные группы, данные соединения способны вступать в реакции этерификации как с органическими, так и с неорганическими кислотами.

ОЛИГОСАХАРИДЫ

Это самая большая и распространенная группа олигосахаридов. Их молекулы состоят из двух остатков гексоз, из двух остатков пентоз или гексозы и пентозы. Чаще встречаются две гексозы.

К числу наиболее важных дисахаридов относятся: сахароза, целлобиоза, лактоза, мальтоза. Молекула дисахарида содержит два остатка моносахаридов, соединенных между собой через атом кислорода (О-гликозидной связью). Дисахариды делят на две группы: восстанавливающие и невосстанавливающие.

Если молекула дисахарида построена таким образом, что в образовании связей между моносахаридами участвуют их гликозидные гидроксилы, то он называется невосстанавливающим. Такой дисахарид не обладает восстанавливающими свойствами, т.е не дает реакции «серебряного зеркала», а также с реактивом Фелинга. Кроме того, он не образует производных по карбонильной группе. Такие типы дисахаридов называют гликозилгликозидами. Например, невосстанавливающий дисахарид, составленный из двух остатков глюкозы, называется глюкозилглюкозидом, а из глюкозы и фруктозы-глюкозилфруктозидом.

Если один из моносахаридов, будучи связанным с другим сохраняет свой полуацетальный (гликозидный) гидроксил (потенциальная альдегидная группа), то такой дисахарид называется восстанавливающим.

Сахароза (тростниковый или свекловичный сахар)

Примером невосстанавливающего дисахарида может служить сахароза, которая состоит из остатков глюкозы и фруктозы. В молекуле сахарозы гликозидная связь соединяет аномерные центры обоих моносахаридов. Систематическое название сахарозы: α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозид, его структурная формула:

Это один из самых распространенных в природе и практически наиболее важных дисахаридов. Сахароза содержится в стеблях, корнях, клубнях и плодах растений. В их листьях образуется в процессе фотосинтеза. В корнеплодах сахарной свеклы ее содержание достигает 28%, а в стеблях сахарного тростника - около 20%.

Сахарозу получают из сахарного тростника (65% мировой потребности) и из сахарной свеклы (30-35%).

Источником сахара в тропиках служат пальмы: кокосовая, сахарная, винная. Перед цветением у пальмы подрезают главную ось соцветия и собирают вытекающий сок. Его выпаривают и получают коричневый сахар. Сок сбраживают также в вино.

Сахарная кукуруза и сахарное сорго в стеблях содержат 10-12% сахарозы.для получения сахара эти растения использовать невыгодно, но из них готовят сладкий сироп, который используют в кондитерской промышленности.

Сахароза хорошо растворима в воде. Растворы сахарозы вращают плоскость поляризации света вправо на 66,5 0 . Сахароза при действии кислот или фермента сахаразы гидролизуется с образованием глюкозы и фруктозы.Эти гексозы имеют противоположные углы удельного вращения (глюкоза +52,5 0 , фруктоза -92 0), суммарный угол вращения после гидролиза становится отрицательным. Поэтому сам процесс расщепления сахарозы на глюкозу и фруктозу назван инверсией сахара, а гидролизованная сахароза- инвертным сахаром.



Сахароза - важный питательный продукт, имеющий большое энергетическое значение в организме: при сгорании 1 г сахарозы образуется около 16,7 кДж. Гидролизованная сахароза легко поддается спиртовому брожению с образованием спирта. Под влиянием специфических микроорганизмов сахароза подвергается молочнокислому, маслянокислому и другим видам брожения.

В промышленности широко применяются производные сахарозы. Октаацетат сахарозы используют в качестве промежуточного слоя при получении стекла триплекс. С помощью бензоата сахарозы, содержащего семь-восемь бензольных остатков на молекулу сахара получают лак и клей. Эфиры сахарозы и высших жирных кислот широко применяют в качестве моющих средств, диэфиры высших жирных кислот и сахарозы- как эмульгаторы при производстве маргарина, фармацевтических и косметических препаратов.

Октаметилсахарозу используют в промышленности для производства пластмасс в качестве пластификаторов, амиловые эфиры сахарозы - для производства стойких пленок.

Для улучшения органолептических свойств (вкуса, запаха) готового пива на основе углеводов разработаны специальные сиропы (жженый сахар). Используют смеси углеводов, главным образом, глюкозы и сахарозы.

Трегалоза (грибной сахар)

Трегалоза состоит из двух молекул α-D-глюкопиранозы, которые соединены между собой двумя полуацетальными гидроксилами, поэтому трегалоза, как и сахароза не обладает восстанавливающими свойствами.

Трегалоза найдена в грибах, спорынье, водорослях, дрожжах (около 18% сухого веса), в гемолимфе многих насекомых.

Целлобиоза

Из восстанавливающих дисахаридов можно в качестве примера привести целлобиозу, имеющую следующую структуру:

Этот дисахарид состоит из двух остатков β-D-глюкопиранозы. Гликозидная связь соединяет первый атом углерода одного остатка с четвёртым атомом углерода второго остатка. Систематическое название этого дисахарида: β-D-глюкопиранозил-(1,4)-β-D-глюкопираноза.

Целлобиоза образуется при ферментативном гидролизе целлюлозы при участии фермента целлюлазы. Она найдена в прорастающих семенах, косточках абрикосов.

Высшие животные не усваивают целлобиозу, так как не обладают разлагающим ферментом.

Улитки, гусеницы, черви и многие микроорганизмы, содержащие ферменты целлобиазу и целлюлазу, способны расщеплять целлюлозосодержащие растительные ткани. В промышленности ее получают в виде октаацетата гидролизом ацетилированной целлюлозы.

Лактоза (молочный сахар)

Лактоза (молочный сахар) состоит из остатка β-D-галактопиранозы и α-D-глюкопиранозы, связанных 1,4-β-гликозидной связью. Обладает восстанавливающими свойствами и поддаётся брожению с образованием молочной кислоты.

Остаток глюкозы обладает свободным гликозидным гидроксилом, поэтому возможно существование лактозы в двух формах. Равновесная смесь её α- и β-формы имеет удельное вращение +52. Она входит в состав молока млекопитающих (5-8%), найдена также в пыльцевых трубочках ряда растений. Лактоза плохо растворима в воде, её можно получить путём упаривания молочной сыворотки. Под действием кислот и фермента лактазы (β-галактозидазы) она расщепляется на глюкозу и галактозу. Фермент лактаза выделяется тонким кишечником. Некоторые этнические группы населения в восточных и африканских странах отличаются отсутствием в их организмах этого фермента. Поэтому они страдают непереносимостью к молочной пище. Эта особенность называется непереносимостью лактозы. Лактоза имеет важное биологическое значение в организме, её используют для приготовления питательных микробиологических сред, в формацевтической промышленности в качестве наполнителя при изготовлении порошков и таблеток.

Лактозу наряду с сахарозой, мальтозой, глюкозой используют при производстве сырокопчёных и сыровяленых колбас. Углеводы при производстве колбас служат пищей для молочнокислой микрофлоры и являются пищевкусовыми добавками, в определенной степени формирующими органолептические свойства готового продукта.

Мальтоза (солодовый сахар).

Мальтоза состоит из остатков двух молекул глюкозы в α-D-глюкопиранозной форме, связанных 1,4-α-гликозидной связью.

Обладает восстанавливающими свойствами, т. к. связь между двумя молекулами D-глюкоз образуется благодаря полуацетальному гидроксилу одной молекулы глюкозы и спиртовому гидроксилу, находящемуся у четвёртого атома углерода второй молекулы глюкозы, в связи с чем один полуацетальный гидроксил остаётся свободным:

Мальтоза содержится в солоде – проросшем зерне. Это промежуточный продукт распада полисахаридов (крахмала и гликогена) под действием ферментов амилаз. Хорошо сбраживается дрожжами, т. к. при действии мальтазы дрожжей она расщепляется на две молекулы глюкозы. Мальтозу гидролизуют кислотами и ферментами α-глюкозидазами (мальтазами). Фермент мальтаза входит в состав слюны, поджелудочного и кишечного сока, имеется в крови, печени и скелетных мышцах, встречается в дрожжах, бактериях, растениях. Фермент мальтаза, полученная из разного сырья, имеет различную активность и оптимальное рН при воздействии. Наиболее чистая мальтаза выделена из дрожжей (рН опт = 6,75-7,25). Мальтоза является промежуточнм продуктом винокуренной и пивоваренной промышленности.

Рутиноза.

Этот дисахарид встречается только в гликозидах. Ее молекула состоит из b-L-рамнозы и a-D-глюкозы, связанных 1,6b-связью:

Рутин (витамин Р, функция которого в организме млекопитающих состоит в укрепляющем действии на кровеносные капилляры и в увеличении свертывающей способности крови) содержит в структуре фрагмент рутинозы (Rut). Этот дисахарид, как и рутин, получил свое название от растения руты, где, как и рутин, он впервые был обнаружен:

Р-витаминная активность ярко выражена у орлаванонового рутинозида – гисперидина, который в количестве до 8% присутствует в апельсиновой кожуре:

Олигосахариды – углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т.д. Дисахариды – сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одними из основных источников углеводов в пище человека и животных. По строению дисахариды – это гликозиды, в которых 2 молекулы моносахаридов соединены гликозидной связью. Среди дисахаридов наиболее широко известны мальтоза, лактоза и сахароза. Мальтоза, являющаяся α-глюкопиранозил-(1–>4)-α-глюкопиранозой, образуется как промежуточный продукт при действии амилаз на крахмал (или гликоген), содержит 2 остатка α-D-глюкозы (название сахара,полуацетальный гидроксил которого участвует в образовании гликозидной связи, оканчивается на≪ил≫).

Мальтоза

В молекуле мальтозы у второго остатка глюкозы имеется свободный полуацетальный гидроксил. Такие дисахариды обладают восстанавливающими свойствами. Одним из наиболее распространенных дисахаридов является сахароза обычный пищевой сахар. Молекула сахарозы состоит из одного остатка D-глюкозы и одного остатка D-фруктозы. Следовательно, это α-глюко-пиранозил-(1–>2)-β-фруктофуранозид:

Сахароза

В отличие от большинства дисахаридов сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами. Гидролиз сахарозы приводит к образованию смеси, которую называют инвертированным сахаром. В этой смеси преобладает сильно левовращающая фруктоза, которая инвертирует (меняет на обратный) знак вращения правовращающего раствора исходной сахарозы. Дисахарид лактоза содержится только в молоке и состоит из D-галактозы и D-глюкозы. Это – β-галактопиранозил-(1–>4)-глюкопираноза:

Благодаря наличию в молекуле свободного полуацетального гидроксила (в остатке глюкозы) лактоза относится к числу редуцирующих дисахаридов. Среди природных трисахаридов наиболее известна рафиноза, содержащая остатки фруктозы, глюкозы и галактозы. Рафиноза в больших количествах содержится в сахарной свекле и во многих других растениях. В целом олигосахариды, присутствующие в растительных тканях, разнообразнее по своему составу, чем олигосахариды животных тканей.

30 Вопрос. Гетерополисахариды

    Хондроитинсульфаты – составные части сердечных клапанов, носовой перегородки, хрящевых тканей. М.б. нескольких типов. Хандроитин – 4-сульфат и 6-сульфат. Гетерополисахарид состоит изповторяющихся звеньев дисахаридов β(Д)-глюкуранозил-1,3-β(Д,N)-ацетилгалактозамин. Сульфат в положении 4 и 6.

    Глалуроновая ксилота – содержится в соединительных, покровных тканях, входит в состав стекловидного тела глаза. Вязкое в-во, хорошо предохраняет глазные кости от внешних воздействий. При гидролизе образует глюкуроновую к-ту иN-ацетилглюкозамин. Связь 1,3-β-гликозидная.

    Гепарин –содержится в печени, в селезенке, сильный антикоагулянт, предохраняет кровь от свертывания (1 мг гепарина предохраняет от свертывания 500мл) присутствует на поверхности многих клеток и внутри клеток.

В мед.практике используется для лечения тромбозов, ожогов, при переливании крови в качестве стабилизатора.

В состав входят повторяющиеся единицы из остатков 6-ти сахаров N-ацетилглюкозамин, его сульфопроизводное, неацетилированное производное.

Гомополисахариды (крахмал, целлюлоза, пектин и другие)

При гидролизе дают глюкозу

Крахмал переваривается под действием амилазы (1,4-гликозидазы), который расщепляет α-1,4-гликозидные связи.

Крахмал состоит из амилозы (лин.строение и амилопектина) разветвленное строение, но каждые 25 фрагментов.

Все крахмалы отличаются по кол-ву амилозы амилопектина.

При кислотном гидролизе крахмал расщепляется на декстрины (красное окрашивание). Окраска с иодом говорит о расщеплении. Если окраска бледная, то то расщепление больше.

Гликоген напоминает амилопектин (расщепление на каждые 10-12 связей) в печени, в мышцах запасное питат.в-во.

Целлюлоза имеет 1,4-β-гликозидную связь.

Пектиновые к-ты – полисахариды фруктов, плодов, овощей, представляют собой метиловые эфиры галактуроновой к-ты, связь 1,4-α-гликозидная.

Гликозиды – производные углеводороды по гликозидному гидролизу.

Амигдалин – входит в состав миндаля. Глюкозы, связанные между собой связями 1,6- β-гликозидными.

Гликованилин (глюкоза, β гликозидная связь).

Синигрин (входит в состав горчицы).

Нейраминовая к-та – продукт конденсации пировиноградной к-ты иN-ацетилмонозамина. Входит в состав гангмозидов (в липидах).


Мурановая кислота (входит в состав стенок бактерий).

Дубильные в-ва – растительного происхождения. Растворимы в воде, дают с хлорным железом окрашенные растворы. Делят на 2 типа: гидролизуемые и негидролизуемые (конденсируются приT с килотой).

Iтип –тонины – производные глюкозы и ди-, триммеров галловых кислот.

(галловая кислота
, способна образовывать диоксиды)

Тонины могут быть различными:

Тонин Фишера имеет структуру:

ДГ – дигаловая кислота

Г – галловая кислота

Точная структура природных танинов не установлена.

Используется: в медицине, фармации, для выделения алкалоидных реагентов.

Mr м.б. до 3000, содержатся в коре деревьев, в плодах некоторых растений.

Существуют эллаговые дуб.в-ва , отличающиеся тем, что при гидролизе образуют нерастворимую эллаговую к-ту.

IIтип –капихинн (конденсируемые дубильные в-ва).

Ф
равоноиды
: соединения: лейкоантоциан, катехин,флавонон, флавонол, флавон, антициан.

Катехин содержат в А и В ОН-, СН2- и различаются по ним. В природе не образуют гликозиды. Легко окисляются и способны к полимеризации, кристаллические бесцветные в-ва. Содержатся в плодах яблони, вишни, груши, в листьях побегов чайного дерева.

Ферментативный процесс приводит к димеризации. Изучает виноделие, чайная промышленность, производство какао.

Соединения – флавоноиды обладают витаминной способностью (Р). Увеличивают эластичность кров.капилляров, больше всего присуще катехину.

В
итамин Р – гликозид кварцетила

Кварцетил – агликон 6β(α)-рамнозидо-(Д)-глюкоза-рамноза. Связь за счет 6 угл.атома в глюкозе. При отсутствии рутина в пище капилляры становятся проницаемыми -> пурпурная болезнь.

Антоцианы – красящие в-ва растений (дильфинидин, пипоргонидин, цианидин(роза и василек)). Отличаются радикалами. Существуют в виде глюкозидов.