Как находить значение дробного выражения. Дробные выражения — Гипермаркет знаний


Итак, если числовое выражение составлено из чисел и знаков +, −, · и:, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.

Приведем решение примеров для пояснения.

Пример.

Вычислите значение выражения 14−2·15:6−3 .

Решение.

Чтобы найти значение выражения, нужно выполнить все указанные в нем действия в соответствии с принятым порядком выполнения этих действий. Вначале по порядку слева направо выполняем умножение и деление, получаем 14−2·15:6−3=14−30:6−3=14−5−3 . Теперь также по порядку слева направо выполняем оставшиеся действия: 14−5−3=9−3=6 . Так мы нашли значение исходного выражения, оно равно 6 .

Ответ:

14−2·15:6−3=6 .

Пример.

Найдите значение выражения .

Решение.

В данном примере нам сначала нужно выполнить умножение 2·(−7) и деление с умножением в выражении . Вспомнив, как выполняется , находим 2·(−7)=−14 . А для выполнения действий в выражении сначала , после чего , и выполняем : .

Подставляем полученные значения в исходное выражение: .

А как быть, когда под знаком корня находится числовое выражение? Чтобы получить значение такого корня, нужно сначала найти значение подкоренного выражения, придерживаясь принятого порядка выполнений действий. Например, .

В числовых выражениях корни следует воспринимать как некоторые числа, и корни целесообразно сразу заменить их значениями, после чего находить значение полученного выражения без корней, выполняя действия в принятой последовательности.

Пример.

Найдите значение выражения с корнями .

Решение.

Сначала найдем значение корня . Для этого, во-первых, вычислим значение подкоренного выражения, имеем −2·3−1+60:4=−6−1+15=8 . А во-вторых, находим значение корня .

Теперь вычислим значение второго корня из исходного выражения: .

Наконец, мы можем найти значение исходного выражения, заменив корни их значениями: .

Ответ:

Достаточно часто, чтобы стало возможно найти значение выражения с корнями, предварительно приходится проводить его преобразование. Покажем решение примера.

Пример.

Каково значение выражения .

Решение.

Мы не имеем возможности заменить корень из трех его точным значением, что не позволяет нам вычислить значение этого выражения описанным выше способом. Однако мы можем вычислить значение этого выражение, выполнив несложные преобразования. Применим формулу разности квадратов : . Учитывая , получаем . Таким образом, значение исходного выражения равно 1 .

Ответ:

.

Со степенями

Если основание и показатель степени являются числами, то их значение вычисляется по определению степени, например, 3 2 =3·3=9 или 8 −1 =1/8 . Встречаются также записи, когда основание и/или показатель степени являются некоторыми выражениями. В этих случаях нужно найти значение выражения в основании, значение выражения в показателе, после чего вычислить значение самой степени.

Пример.

Найдите значение выражения со степенями вида 2 3·4−10 +16·(1−1/2) 3,5−2·1/4 .

Решение.

В исходном выражении две степени 2 3·4−10 и (1−1/2) 3,5−2·1/4 . Их значения нужно вычислить до выполнения остальных действий.

Начнем со степени 2 3·4−10 . В ее показателе находится числовое выражение, вычислим его значение: 3·4−10=12−10=2 . Теперь можно найти значение самой степени: 2 3·4−10 =2 2 =4 .

В основании и показателе степени (1−1/2) 3,5−2·1/4 находятся выражения, вычисляем их значения, чтобы потом найти значение степени. Имеем (1−1/2) 3,5−2·1/4 =(1/2) 3 =1/8 .

Теперь возвращаемся к исходному выражению, заменяем в нем степени их значениями, и находим нужное нам значение выражения: 2 3·4−10 +16·(1−1/2) 3,5−2·1/4 = 4+16·1/8=4+2=6 .

Ответ:

2 3·4−10 +16·(1−1/2) 3,5−2·1/4 =6 .

Стоит заметить, что более распространены случаи, когда целесообразно провести предварительное упрощение выражения со степенями на базе .

Пример.

Найдите значение выражения .

Решение.

Судя по показателям степеней, находящихся в данном выражении, точные значения степеней получить не удастся. Попробуем упростить исходное выражение, может быть это поможет найти его значение. Имеем

Ответ:

.

Степени в выражениях зачастую идут рука об руку с логарифмами, но о нахождении значений выражений с логарифмами мы поговорим в одном из .

Находим значение выражения с дробями

Числовые выражения в своей записи могут содержать дроби . Когда требуется найти значение подобного выражения, дроби, отличные от обыкновенных дробей, следует заменить их значениями перед выполнением остальных действий.

В числителе и знаменателе дробей (которые отличны от обыкновенных дробей) могут находиться как некоторые числа, так и выражения. Чтобы вычислить значение такой дроби нужно вычислить значение выражения в числителе, вычислить значение выражения в знаменателе, после чего вычислить значение самой дроби. Такой порядок объясняется тем, что дробь a/b , где a и b – некоторые выражения, по сути представляет собой частное вида (a):(b) , так как .

Рассмотрим решение примера.

Пример.

Найдите значение выражения с дробями .

Решение.

В исходном числовом выражении три дроби и . Чтобы найти значение исходного выражения, нам сначала нужно эти дроби, заменить их значениями. Сделаем это.

В числителе и знаменателе дроби находятся числа. Чтобы найти значение такой дроби, заменяем дробную черту знаком деления, и выполняем это действие: .

В числителе дроби находится выражение 7−2·3 , его значение найти легко: 7−2·3=7−6=1 . Таким образом, . Можно переходить к нахождению значения третьей дроби.

Третья дробь в числителе и знаменателе содержит числовые выражения, поэтому, сначала нужно вычислить их значения, а это позволит найти значение самой дроби. Имеем .

Осталось подставить найденные значения в исходное выражение, и выполнить оставшиеся действия: .

Ответ:

.

Часто при нахождении значений выражений с дробями приходится выполнять упрощение дробных выражений , базирующееся на выполнении действий с дробями и на сокращении дробей.

Пример.

Найдите значение выражения .

Решение.

Корень из пяти нацело не извлекается, поэтому для нахождения значения исходного выражения для начала упростим его. Для этого избавимся от иррациональности в знаменателе первой дроби: . После этого исходное выражение примет вид . После вычитания дробей пропадут корни, что нам позволит найти значение изначально заданного выражения: .

Ответ:

.

С логарифмами

Если числовое выражение содержит , и если есть возможность избавиться от них, то это делается перед выполнением остальных действий. Например, при нахождении значения выражения log 2 4+2·3 , логарифм log 2 4 заменяется его значением 2 , после чего выполняются остальные действия в обычном порядке, то есть, log 2 4+2·3=2+2·3=2+6=8 .

Когда под знаком логарифма и/или в его основании находятся числовые выражения, то сначала находятся их значения, после чего вычисляется значение логарифма. Для примера рассмотрим выражение с логарифмом вида . В основании логарифма и под его знаком находятся числовые выражения, находим их значения: . Теперь находим логарифм, после чего завершаем вычисления: .

Если же логарифмы не вычисляются точно, то найти значение исходного выражения может помочь предварительное его упрощение с использованием . При этом нужно хорошо владеть материалом статьи преобразование логарифмических выражений .

Пример.

Найдите значение выражения с логарифмами .

Решение.

Начнем с вычисления log 2 (log 2 256) . Так как 256=2 8 , то log 2 256=8 , следовательно, log 2 (log 2 256)=log 2 8=log 2 2 3 =3 .

Логарифмы log 6 2 и log 6 3 можно сгруппировать. Сумма логарифмов log 6 2+log 6 3 равна логарифму произведения log 6 (2·3) , таким образом, log 6 2+log 6 3=log 6 (2·3)=log 6 6=1 .

Теперь разберемся с дробью . Для начала основание логарифма в знаменателе перепишем в виде обыкновенной дроби как 1/5 , после чего воспользуемся свойствами логарифмов, что позволит нам получить значение дроби:
.

Осталось лишь подставить полученные результаты в исходное выражение и закончить нахождение его значения:

Ответ:

Как найти значение тригонометрического выражения?

Когда числовое выражение содержит или и т.п., то их значения вычисляются перед выполнением остальных действий. Если под знаком тригонометрических функций стоят числовые выражения, то сначала вычисляются их значения, после чего находятся значения тригонометрических функций.

Пример.

Найдите значение выражения .

Решение.

Обратившись к статье , получаем и cosπ=−1 . Подставляем эти значения в исходное выражение, оно принимает вид . Чтобы найти его значение, сначала нужно выполнить возведение в степень, после чего закончить вычисления: .

Ответ:

.

Стоит отметить, что вычисление значений выражений с синусами, косинусами и т.п. зачастую требует предварительного преобразования тригонометрического выражения .

Пример.

Чему равно значение тригонометрического выражения .

Решение.

Преобразуем исходное выражение, используя , в данном случае нам потребуются формула косинуса двойного угла и формула косинуса суммы:

Проделанные преобразования помогли нам найти значение выражения.

Ответ:

.

Общий случай

В общем случае числовое выражение может содержать и корни, и степени, и дроби, и какие-либо функции, и скобки. Нахождение значений таких выражений состоит в выполнении следующих действий:

  • сначала корни, степени, дроби и т.п. заменяются их значениями,
  • дальше действия в скобках,
  • и по порядку слева направо выполняется оставшиеся действия - умножение и деление, а за ними – сложение и вычитание.

Перечисленные действия выполняются до получения конечного результата.

Пример.

Найдите значение выражения .

Решение.

Вид данного выражения довольно сложен. В этом выражении мы видим дробь, корни, степени, синус и логарифм. Как же найти его значение?

Продвигаясь по записи слева на право, мы натыкаемся на дробь вида . Мы знаем, что при работе с дробями сложного вида, нам нужно отдельно вычислить значение числителя, отдельно – знаменателя, и, наконец, найти значение дроби.

В числителе мы имеем корень вида . Чтобы определить его значение, сначала надо вычислить значение подкоренного выражения . Здесь есть синус. Найти его значение мы сможем лишь после вычисления значения выражения . Это мы можем сделать: . Тогда , откуда и .

Со знаменателем все просто: .

Таким образом, .

После подстановки этого результата в исходное выражение, оно примет вид . В полученном выражении содержится степень . Чтобы найти ее значение, сначала придется найти значение показателя, имеем .

Итак, .

Ответ:

.

Если же нет возможности вычислить точные значения корней, степеней и т.п., то можно попробовать избавиться от них с помощью каких-либо преобразований, после чего вернуться к вычислению значения по указанной схеме.

Рациональные способы вычисления значений выражений

Вычисление значений числовых выражений требует последовательности и аккуратности. Да, необходимо придерживаться последовательности выполнения действий, записанной в предыдущих пунктах, но не нужно это делать слепо и механически. Этим мы хотим сказать, что часто можно рационализировать процесс нахождения значения выражения. Например, значительно ускорить и упростить нахождение значения выражения позволяют некоторые свойства действий с числами.

К примеру, мы знаем такое свойство умножения: если один из множителей в произведении равен нулю, то и значение произведения равно нулю. Используя это свойство, мы можем сразу сказать, что значение выражения 0·(2·3+893−3234:54·65−79·56·2,2)· (45·36−2·4+456:3·43) равно нулю. Если бы мы придерживались стандартного порядка выполнения действий, то сначала нам бы пришлось вычислять значения громоздких выражений в скобках, а это бы заняло массу времени, и в результате все равно получился бы нуль.

Также удобно пользоваться свойством вычитания равных чисел: если от числа отнять равное ему число, то в результате получится нуль. Это свойство можно рассматривать шире: разность двух одинаковых числовых выражений равна нулю. Например, не вычисляя значения выражений в скобках можно найти значение выражения (54·6−12·47362:3)−(54·6−12·47362:3) , оно равно нулю, так как исходное выражение представляет собой разность одинаковых выражений.

Рациональному вычислению значений выражений могут способствовать тождественные преобразования . Например, бывает полезна группировка слагаемых и множителей , не менее часто используется вынесение общего множителя за скобки . Так значение выражения 53·5+53·7−53·11+5 очень легко находится после вынесения множителя 53 за скобки: 53·(5+7−11)+5=53·1+5=53+5=58 . Непосредственное вычисление заняло бы намного больше времени.

В заключение этого пункта обратим внимание на рациональный подход к вычислению значений выражений с дробями – одинаковые множители в числителе и знаменателе дроби сокращаются. Например, сокращение одинаковых выражений в числителе и знаменателе дроби позволяет сразу найти ее значение, которое равно 1/2 .

Нахождение значения буквенного выражения и выражения с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. То есть, речь идет о нахождении значения буквенного выражения для данных значений букв или о нахождении значения выражения с переменными для выбранных значений переменных.

Правило нахождения значения буквенного выражения или выражения с переменными для данных значений букв или выбранных значений переменных таково: в исходное выражение нужно подставить данные значения букв или переменных, и вычислить значение полученного числового выражения, оно и является искомым значением.

Пример.

Вычислите значение выражения 0,5·x−y при x=2,4 и y=5 .

Решение.

Чтобы найти требуемое значение выражения, сначала нужно подставить в исходное выражение данные значения переменных, после чего выполнить действия: 0,5·2,4−5=1,2−5=−3,8 .

Ответ:

−3,8 .

В заключение отметим, что иногда выполнение преобразований буквенных выражений и выражений с переменными позволяет получить их значения, независимо от значений букв и переменных. Например, выражение x+3−x можно упростить, после чего оно примет вид 3 . Отсюда можно сделать вывод, что значение выражения x+3−x равно 3 для любых значений переменной x из ее области допустимых значений (ОДЗ) . Еще пример: значение выражения равно 1 для всех положительных значений x , так областью допустимых значений переменной x в исходном выражении является множество положительных чисел, и на этой области имеет место равенство .

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.

Решение задач из задачника Виленкин, Жохов, Чесноков, Шварцбурд за 6 класс по математике на тему:

  • Глава I. Обыкновенные дроби.
    § 3. Умножение и деление обыкновенных дробей:
    19. Дробные выражения
  • 692 Назовите числитель и знаменатель выражения
    РЕШЕНИЕ

    693 Напишите дробное выражение, числитель которого За - 2b, а знаменатель - 6,7x + у
    РЕШЕНИЕ

    694 Запишите в виде дробного выражения частное (3.8 · 4.6 - 0,7): (6,3: 2,1 - 2,6). Найдите значение этого выражения.
    РЕШЕНИЕ

    695 Найдите значение выражения
    РЕШЕНИЕ

    698 Найдите значение выражения a/5,7-4,5 + a/2,8+4,4
    РЕШЕНИЕ

    699 Найдите значение выражения 2x/y - x/2y если x = 18,1 - 10,7 и y = 35 - 23,8;
    РЕШЕНИЕ

    700 Найти с помощью микрокалькулятора значение выражения 5,4-3,275/3,4*12,5 можно по программе, а значение 3,995/0,675*2,4-0,022 по такой. Выполните вычисления по этим программам. Постройте программу нахождения значения выражения и выполните по ней вычисления
    РЕШЕНИЕ

    702 На координатном луче отмечены числа a и b. Можно ли указать на луче точку с координатой а:1/2; b:1/3; a:2/3?
    РЕШЕНИЕ

    704 Найдите произведение дробей 2/3 и 11/7 и дробей, обратных данным. Каким свойством обладают эти два произведения? Проверьте ваше предположение еще на одном примере. Докажите это свойство в общем виде с помощью буквенных выражений.
    РЕШЕНИЕ

    705 Найдите наибольшее и наименьшее значения выражения 1 1/3:x, если x = 1; 1/9; 2 3/5; 8/3
    РЕШЕНИЕ

    706 Составьте задачу по уравнению
    РЕШЕНИЕ

    707 Ваня и Таня должны были встретиться на станции, чтобы вместе поехать на поезде, который отправляется в 8 ч утра. Ваня думает, что его часы спешат на 35 мин, хотя в действительности они отстают на 15 мин. А Таня - что ее часы отстают на 15 мин, хотя спешат на 10 мин. Что произойдет, если каждый из них, полагаясь на часы, будет стремиться прийти за 5 мин до отхода поезда?
    РЕШЕНИЕ

    708 Возраст Сережи составляет 2/7 возраста отца. Сереже 12 лет. Сколько лет отцу?
    РЕШЕНИЕ

    709 Комбайнер за 1 ч скосил пшеницу с площади 3 га, что составляет 15% того, что он скосил за день. Какую площадь скосил комбайнер за день?
    РЕШЕНИЕ

    710 25% всех деревьев сада составляют груши, остальные 150 - яблони. Сколько грушевых деревьев в саду?
    РЕШЕНИЕ

    711 Площадь 60 га составляет 0,75 площади поля. Чему равна его площадь
    РЕШЕНИЕ

    712 Найдите число, если 0,9 его равны 1 2/7.
    РЕШЕНИЕ

    713 Участок земли, площадь которого 6 га, составляет 2/3 сада, а площадь сада - 3/7 всего приусадебного участка. Чему равна площадь приусадебного участка?
    РЕШЕНИЕ

    714 По плану бригада должна отремонтировать за месяц 25% дороги между двумя посёлками. За первую неделю отремонтировали 2 км 100 м дороги,что составило 30% месячного плана.Какова длина всей дороги между посёлками?
    РЕШЕНИЕ

    715 1) В книге 240 страниц. в субботу мальчик прочитал 7,5% всей книги, а в воскресенье -на 12 страниц больше. сколько страниц ему осталось прочитать? 2)Для птицефермы заготовили 2600 т корма. В первый месяц было израсходовано 8,5% корма а во второй на 30т больше. Сколько тонн корма осталось?
    РЕШЕНИЕ

    716 Найдите значение выражения
    РЕШЕНИЕ

    717 Нападающие Коля и Никита во время баскетбольного матча принесли своей команде 3/7 и 5/14 всех очков. Сколько очков набрала эта команда, если Коля набрал на 7 больше, чем Никита?
    РЕШЕНИЕ

    718 Поезд проходит расстояние между городами за 6 ч со скоростью 68 км/ч. Какое время потребуется велосипедисту, чтобы проехать 1/8 этого расстояния со скоростью 17 км/ч?
    РЕШЕНИЕ

    719 Получили сплав из куска меди объемом 15 см3 и цинка объемом 10 см3. Какова масса 1 см3 сплава, если масса 1 см3 меди 8,9 г, а цинка - 7,1 г? Полученный результат округлите до десятых долей грамма.
    РЕШЕНИЕ

    720 Кухня в 10 м2 составляет 0,4 всех нежилых помещений квартиры. Площадь нежилых помещений составляет 5/18 площади всей квартиры. Найдите ее площадь
    РЕШЕНИЕ

    721 Вырежьте из плотной бумаги фигуры, изображенные на рисунке 31, и склейте фигуры на рисунке 32.

    Начальный уровень

    Преобразование выражений. Подробная теория (2019)

    Преобразование выражений

    Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:

    «Да куда уж проще» - говорим мы, но такой ответ обычно не прокатывает.

    Сейчас я научу тебя не бояться никаких подобных задач. Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа (да-да, к черту эти буквы).

    Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители. Поэтому сперва, если ты этого не сделал раньше, обязательно освой темы « » и « ».

    Прочитал? Если да, то теперь ты готов.

    Базовые операции упрощения

    Сейчас разберем основные приемы, которые используются при упрощении выражений.

    Самый простой из них - это

    1. Приведение подобных

    Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел. Подобные - это слагаемые (одночлены) с одинаковой буквенной частью. Например, в сумме подобные слагаемые - это и.

    Вспомнил?

    Привести подобные - значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.

    А как же нам сложить друг с другом буквы? - спросишь ты.

    Это очень легко понять, если представить, что буквы - это какие-то предметы. Например, буква - это стул. Тогда чему равно выражение? Два стула плюс три стула, сколько будет? Правильно, стульев: .

    А теперь попробуй такое выражение: .

    Чтобы не запутаться, пусть разные буквы обозначают разны предметы. Например, - это (как обычно) стул, а - это стол. Тогда:

    стула стола стул столов стульев стульев столов

    Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами . Например, в одночлене коэффициент равен. А в он равен.

    Итак, правило приведения подобных:

    Примеры:

    Приведите подобные:

    Ответы:

    2. (и подобны, так как, следовательно у этих слагаемых одинаковая буквенная часть).

    2. Разложение на множители

    Это обычно самая важная часть в упрощении выражений. После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители, то есть представить в виде произведения. Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.

    Подробно способы разложения выражений на множители ты проходил в теме « », поэтому здесь тебе остается только вспомнить выученное. Для этого реши несколько примеров (нужно разложить на множители):

    Решения:

    3. Сокращение дроби.

    Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?

    В этом вся прелесть сокращения.

    Все просто:

    Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.

    Это правило вытекает из основного свойства дроби:

    То есть суть операции сокращения в том, что числитель и знаменатель дроби делим на одно и то же число (или на одно и то же выражение).

    Чтобы сократить дробь, нужно:

    1) числитель и знаменатель разложить на множители

    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    Принцип, я думаю, понятен?

    Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить - это значит поделить числитель и знаменатель на одно и то же число.

    Никаких сокращений, если в числителе или знаменателе сумма.

    Например: надо упростить.

    Некоторые делают так: , что абсолютно неверно.

    Еще пример: сократить.

    «Самые умные» сделают так: .

    Скажи мне, что здесь неверно? Казалось бы: - это множитель, значит можно сокращать.

    Но нет: - это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.

    Вот другой пример: .

    Это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на, а потом и на:

    Можно и сразу поделить на:

    Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:

    Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным». То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители). Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

    Для закрепления реши самостоятельно несколько примеров :

    Ответы:

    1. Надеюсь, ты не бросился сразу же сокращать и? Еще не хватало «сократить» единицы типа такого:

    Первым действием должно быть разложение на множители:

    4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

    Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители. Давай вспомним:

    Ответы:

    1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

    2. Здесь общий знаменатель равен:

    3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

    Совсем другое дело, если дроби содержат буквы, например:

    Начнем с простого:

    a) Знаменатели не содержат букв

    Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

    теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

    Попробуй сам:

    b) Знаменатели содержат буквы

    Давай вспомним принцип нахождения общего знаменателя без букв:

    · в первую очередь мы определяем общие множители;

    · затем выписываем все общие множители по одному разу;

    · и домножаем их на все остальные множители, не общие.

    Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

    Подчеркнем общие множители:

    Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

    Это и есть общий знаменатель.

    Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

    · раскладываем знаменатели на множители;

    · определяем общие (одинаковые) множители;

    · выписываем все общие множители по одному разу;

    · домножаем их на все остальные множители, не общие.

    Итак, по порядку:

    1) раскладываем знаменатели на множители:

    2) определяем общие (одинаковые) множители:

    3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

    Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

    Кстати, есть одна хитрость:

    Например: .

    Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

    в степени

    в степени

    в степени

    в степени.

    Усложним задание:

    Как сделать у дробей одинаковый знаменатель?

    Давай вспомним основное свойство дроби:

    Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

    Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

    Итак, очередное незыблемое правило:

    Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

    Но на что же надо домножить, чтобы получить?

    Вот на и домножай. А домножай на:

    Выражения, которые невозможно разложить на множители будем называть «элементарными множителями». Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

    Что скажешь насчет выражения? Оно элементарное?

    Нет, поскольку его можно разложить на множители:

    (о разложении на множители ты уже читал в теме « »).

    Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

    Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

    Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

    Еще пример:

    Решение:

    Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

    Отлично! Тогда:

    Еще пример:

    Решение:

    Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

    Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

    Так и напишем:

    То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

    Теперь приводим к общему знаменателю:

    Усвоил? Сейчас проверим.

    Задачи для самостоятельного решения:

    Ответы:

    Тут надо вспомнить еще одну - разность кубов:

    Обрати внимание, что в знаменателе второй дроби не формула «квадрат суммы»! Квадрат суммы выглядел бы так: .

    А - это так называемый неполный квадрат суммы: второе слагаемое в нем - это произведение первого и последнего, а не удвоенное их произведение. Неполный квадрат суммы - это один из множителей в разложени разности кубов:

    Что делать, если дробей аж три штуки?

    Да то же самое! В первую очередь сделаем так, чтобы максимальное количество множителей в знаменателях было одинаковым:

    Обрати внимание: если поменять знаки внутри одной скобки, знак перед дробью меняется на противоположный. Когда меняем знаки во второй скобке, знак перед дробью снова меняется на противоположный. В результате он (знак перед дробью) не изменился.

    В общий знаменатель выписавыем полностью первый знаменатель, а потом дописываем к нему все множители, которые еще не написаны, из второго, а потом из третьего (и так далее, если дробей больше). То есть получается вот так:

    Хм… С дробями-то понятно что делать. Но вот как быть с двойкой?

    Все просто: ты ведь умеешь складывать дроби? Значит, надо сделать так, чтобы двойка стала дробью! Вспоминаем: дробь - это операция деления (числитель делится на знаменатель, если ты вдруг забыл). И нет ничего проще, чем разделить число на. При этом само число не изменится, но превратится в дробь:

    То, что нужно!

    5. Умножение и деление дробей.

    Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

    Порядок действий

    Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

    Посчитал?

    Должно получиться.

    Итак, напоминаю.

    Первым делом вычисляется степень.

    Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

    И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

    Но: выражение в скобках вычисляется вне очереди!

    Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

    А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

    Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

    Хорошо, это все просто.

    Но это ведь не то же самое, что выражение с буквами?

    Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

    Обычно наша цель - представить выражение в виде произведения или частного.

    Например:

    Упростим выражение.

    1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

    Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

    2) Получаем:

    Умножение дробей: что может быть проще.

    3) Теперь можно и сократить:

    Ну вот и все. Ничего сложного, правда?

    Еще пример:

    Упрости выражение.

    Сначала попробуй решить сам, и уж только потом посмотри решение.

    Перво-наперво определим порядок действий. Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна. Потом выполним деление дробей. Ну и результат сложим с последней дробью. Схематически пронумерую действия:

    Теперь покажу весть процесс, подкрашивая текущее действие красным:

    Напоследок дам тебе два полезных совета:

    1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

    2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

    Вот тебе задачи для самостоятельного решения:

    И обещанная в самом начале:

    Решения (краткие):

    Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

    Теперь вперед к обучению!

    ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

    Базовые операции упрощения:

    • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
    • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
    • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
      1) числитель и знаменатель разложить на множители
      2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

      ВАЖНО: сокращать можно только множители!

    • Сложение и вычитание дробей:
      ;
    • Умножение и деление дробей:
      ;

    Действия с дробями.

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно "не очень..."
    И для тех, кто "очень даже...")

    Итак, что из себя представляют дроби, виды дробей, преобразования - мы вспомнили. Займёмся главным вопросом.

    Что можно делать с дробями? Да всё то, что и с обычными числами. Складывать, вычитать, умножать, делить.

    Все эти действия с десятичными дробями ничем не отличаются от действий с целыми числами. Собственно, этим они и хороши, десятичные. Единственно, запятую правильно поставить надо.

    Смешанные числа , как я уже говорил, малопригодны для большинства действий. Их всё равно надо переводить в обыкновенные дроби.

    А вот действия с обыкновенными дробями похитрее будут. И гораздо важнее! Напомню: все действия с дробными выражениями с буковками, синусами, неизвестными и прочая и прочая ничем не отличаются от действий с обыкновенными дробями ! Действия с обыкновенными дробями - это основа для всей алгебры. Именно по этой причине мы очень подробно разберём здесь всю эту арифметику.

    Сложение и вычитание дробей.

    Сложить (отнять) дроби с одинаковыми знаменателями каждый сможет (очень надеюсь!). Ну уж совсем забывчивым напомню: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Типа:

    Короче, в общем виде:

    А если знаменатели разные? Тогда, используя основное свойство дроби (вот оно и опять пригодилось!), делаем знаменатели одинаковыми! Например:

    Здесь нам из дроби 2/5 пришлось сделать дробь 4/10. Исключительно с целью сделать знаменатели одинаковыми. Замечу, на всякий случай, что 2/5 и 4/10 это одна и та же дробь ! Только 2/5 нам неудобно, а 4/10 очень даже ничего.

    Кстати, в этом суть решений любых заданий по математике. Когда мы из неудобного выражения делаем то же самое, но уже удобное для решения .

    Ещё пример:

    Ситуация аналогичная. Здесь мы из 16 делаем 48. Простым умножением на 3. Это всё понятно. Но вот нам попалось что-нибудь типа:

    Как быть?! Из семёрки девятку трудно сделать! Но мы умные, мы правила знаем! Преобразуем каждую дробь так, чтобы знаменатели стали одинаковыми. Это называется «приведём к общему знаменателю»:

    Во как! Откуда же я узнал про 63? Очень просто! 63 это число, которое нацело делится на 7 и 9 одновременно. Такое число всегда можно получить перемножением знаменателей. Если мы какое-то число умножили на 7, к примеру, то результат уж точно на 7 делиться будет!

    Если надо сложить (вычесть) несколько дробей, нет нужды делать это попарно, по шагам. Просто надо найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю. Например:

    И какой же общий знаменатель будет? Можно, конечно, перемножить 2, 4, 8, и 16. Получим 1024. Кошмар. Проще прикинуть, что число 16 отлично делится и на 2, и на 4, и на 8. Следовательно, из этих чисел легко получить 16. Это число и будет общим знаменателем. 1/2 превратим в 8/16, 3/4 в 12/16, ну и так далее.

    Кстати, если за общий знаменатель взять 1024, тоже всё получится, в конце всё посокращается. Только до этого конца не все доберутся, из-за вычислений...

    Дорешайте уж пример самостоятельно. Не логарифм какой... Должно получиться 29/16.

    Итак, со сложением (вычитанием) дробей ясно, надеюсь? Конечно, проще работать в сокращённом варианте, с дополнительными множителями. Но это удовольствие доступно тем, кто честно трудился в младших классах... И ничего не забыл.

    А сейчас мы поделаем те же самые действия, но не с дробями, а с дробными выражениями . Здесь обнаружатся новые грабли, да...

    Итак, нам надо сложить два дробных выражения:

    Надо сделать знаменатели одинаковыми. Причём только с помощью умножения ! Уж так основное свойство дроби велит. Поэтому я не могу в первой дроби в знаменателе к иксу прибавить единицу. (а вот бы хорошо было!). А вот если перемножить знаменатели, глядишь, всё и срастётся! Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

    И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби - на х. Получится вот что:

    Обратите внимание! Здесь появились скобки! Это и есть те грабли, на которые многие наступают. Не скобки, конечно, а их отсутствие. Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки...

    В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные. Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

    Вот и получили ответ. Процесс кажется долгим и трудным, но это от практики зависит. Порешаете примеры, привыкните, всё станет просто. Те, кто освоил дроби в положенное время, все эти операции одной левой делают, на автомате!

    И ещё одно замечание. Многие лихо расправляются с дробями, но зависают на примерах с целыми числами. Типа: 2 + 1/2 + 3/4= ? Куда пристегнуть двойку? Никуда не надо пристёгивать, надо из двойки дробь сделать. Это не просто, а очень просто! 2=2/1. Вот так. Любое целое число можно записать в виде дроби. В числителе - само число, в знаменателе - единица. 7 это 7/1, 3 это 3/1 и так далее. С буквами - то же самое. (а+в) = (а+в)/1, х=х/1 и т.д. А дальше работаем с этим дробями по всем правилам.

    Ну, по сложению - вычитанию дробей знания освежили. Преобразования дробей из одного вида в другой - повторили. Можно и провериться. Порешаем немного?)

    Вычислить:

    Ответы (в беспорядке):

    71/20; 3/5; 17/12; -5/4; 11/6

    Умножение/деление дробей - в следующем уроке. Там же и задания на все действия с дробями.

    Если Вам нравится этот сайт...

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.

    Целое выражение - это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое либо число, отличное от нуля.

    Примеры целого выражения

    Ниже представлены несколько примеров целых выражений:

    1. 12*a^3 + 5*(2*a -1);

    3. 4*y- ((5*y+3)/5) -1;

    Дробные выражения

    Если же в выражении присутствует деление на переменную или на другое выражение содержащее переменную, то такое выражение не является целым. Такое выражение называется дробным. Дадим полное определение дробного выражения.

    Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит так же деление на выражения с буквенными переменными.

    Примеры дробных выражений:

    1. (12*a^3 +4)/a

    3. 4*x- ((5*y+3)/(5-y)) +1;

    Дробные и целые выражения составляют два больших множества математических выражений. Если эти множества объединить, то получим новое множество, которое называется рациональными выражениями. То есть рациональные выражения это все целый и дробные выражения.

    Нам известно, что целые выражения имеют смысл при любых значениях переменных, которые в него входят. Это следует из того, что для нахождения значения целого выражения необходимо выполнять действия, которые всегда возможны: сложение, вычитание, умножение, деление на число отличное от нуля.

    Дробные же выражения, в отличии от целых, могут и не иметь смысла. Так как присутствует операция деления на переменную или выражение содержащее переменные, и это выражение может обратится в нуль, а делить на нуль нельзя. Значения переменных, при которых дробное выражение будет иметь смысл, называют допустимыми значениями переменных.

    Рациональная дробь

    Одним из частных случаев рациональных выражений будет являться дробь, числитель и знаменатель которой многочлены. Для такой дроби в математике тоже существует свое название - рациональная дробь.

    Рациональная дробь будет иметь смысл в том случае, если её знаменатель не равен нулю. То есть допустимыми будут являться все значения переменных, при которых знаменатель дроби отличен от нуля.